如何正确计算三角洲机器人的直接运动学?

时间:2013-08-10 14:32:04

标签: java math computational-geometry robotics kinematics

我正在尝试为delta机器人组合一个简单的模拟,我想使​​用正向运动学(直接运动学)通过传递3个角度来计算末端执行器在空间中的位置。

我从Trossen Robotics Forum Delta Robot Tutorial开始,我可以理解大部分数学,但不是全部。当我试图计算3个球体相交的点时,我在前向运动学的最后一部分迷路了。我一般都看过球面坐标,但无法找出用于找到旋转的两个角度(到E(x,y,z))。我看到他们正在解决球体的等式,但这就是我迷失的地方。

delta robot direct kinematics

delta robot direct kinematics

delta robot direct kinematics

三角洲机器人是一个并联机器人(意味着基座和末端执行器(头部)始终保持平行)。基部和末端执行器是等边三角形,腿(通常)放置在三角形边的中间。

delta机器人底座的一侧标有f。 delta机器人的效应器的一侧标记为e。 腿的上半部分标记为rf,下侧标记为re

原点(O)位于基本三角形的中心。 伺服电机位于基本三角形的中间(F1,F2,F3)。 关节标记为J1,J2,J3。小腿在点E1,E2,E3处连接末端执行器 E是末端执行器三角形的中心。

我可以轻松计算点F1,F2,F3和J1,J2,J3。 这是E1,E2,E3我遇到了问题。从解释来看, 我明白J1点向内翻了一下(结束效应器的中位数的一半) 到J1'并且它成为半径为re(小腿长度)的球体的中心。 对所有关节执行此操作将导致3个球体在相同位置相交:E(x,y,z)。通过求解球面方程,我们找到E(x,y,z)。

还有一个解释的公式:

dk equation 1

dk equation 2 但这就是我迷路的地方。我的数学技能不是很好。 有人可以用更简单的方式解释这些, 对于我们不那么精通数学的人?

我还使用了提供的示例代码(如果您启用了WebGL) 浏览器)您可以运行here。单击并拖动以旋转场景。要控制三个角度,请使用q / Q,w / W,e / E来减小/增加角度。

完整代码列表:

//Rhino measurements in cm
final float e = 21;//end effector side
final float f = 60.33;//base side
final float rf = 67.5;//upper leg length - radius of upper sphere
final float re = 95;//lower leg length - redius of lower sphere (with offset will join in E(x,y,z))

final float sqrt3 = sqrt(3.0);
final float sin120 = sqrt3/2.0;   
final float cos120 = -0.5;        
final float tan60 = sqrt3;
final float sin30 = 0.5;
final float tan30 = 1/sqrt3;
final float a120 = TWO_PI/3;
final float a60 = TWO_PI/6;

//bounds
final float minX = -200;
final float maxX = 200;
final float minY = -200;
final float maxY = 200;
final float minZ = -200;
final float maxZ = -10;
final float maxT = 54;
final float minT = -21;

float xp = 0;
float yp = 0;
float zp =-45;
float t1 = 0;//theta
float t2 = 0;
float t3 = 0;

float prevX;
float prevY;
float prevZ;
float prevT1;
float prevT2;
float prevT3;

boolean validPosition;
//cheap arcball
PVector offset,cameraRotation = new PVector(),cameraTargetRotation = new PVector();

void setup() {
  size(900,600,P3D);
}

void draw() {
  background(192);
  pushMatrix();
  translate(width * .5,height * .5,300);
  //rotateY(map(mouseX,0,width,-PI,PI));

  if (mousePressed && (mouseX > 300)){
    cameraTargetRotation.x += -float(mouseY-pmouseY);
    cameraTargetRotation.y +=  float(mouseX-pmouseX);
  }
  rotateX(radians(cameraRotation.x -= (cameraRotation.x - cameraTargetRotation.x) * .35));
  rotateY(radians(cameraRotation.y -= (cameraRotation.y - cameraTargetRotation.y) * .35));

  stroke(0);
  et(f,color(255));
  drawPoint(new PVector(),2,color(255,0,255));
  float[] t = new float[]{t1,t2,t3};
  for(int i = 0 ; i < 3; i++){
    float a = HALF_PI+(radians(120)*i);
    float r1 = f / 1.25 * tan(radians(30));
    float r2 = e / 1.25 * tan(radians(30));
    PVector F = new PVector(cos(a) * r1,sin(a) * r1,0);
    PVector E = new PVector(cos(a) * r2,sin(a) * r2,0);
    E.add(xp,yp,zp);
    //J = F * rxMat
    PMatrix3D m = new PMatrix3D();
    m.translate(F.x,F.y,F.z);
    m.rotateZ(a);
    m.rotateY(radians(t[i]));
    m.translate(rf,0,0);

    PVector J = new PVector();
    m.mult(new PVector(),J);
    line(F.x,F.y,F.z,J.x,J.y,J.z);
    line(E.x,E.y,E.z,J.x,J.y,J.z);
    drawPoint(F,2,color(255,0,0));
    drawPoint(J,2,color(255,255,0));
    drawPoint(E,2,color(0,255,0));
    //println(dist(F.x,F.y,F.z,J.x,J.y,J.z)+"\t"+rf);
    println(dist(E.x,E.y,E.z,J.x,J.y,J.z)+"\t"+re);//length should not change
  }
  pushMatrix();
    translate(xp,yp,zp);
    drawPoint(new PVector(),2,color(0,255,255));
    et(e,color(255));
    popMatrix();
  popMatrix(); 
}
void drawPoint(PVector p,float s,color c){
  pushMatrix();
    translate(p.x,p.y,p.z);
    fill(c);
    box(s);
  popMatrix();
}
void et(float r,color c){//draw equilateral triangle, r is radius ( median), c is colour
  pushMatrix();
  rotateZ(-HALF_PI);
  fill(c);
  beginShape();
  for(int i = 0 ; i < 3; i++)
    vertex(cos(a120*i) * r,sin(a120*i) * r,0);
  endShape(CLOSE);
  popMatrix();
}
void keyPressed(){
  float amt = 3;
  if(key == 'q') t1 -= amt;
  if(key == 'Q') t1 += amt;
  if(key == 'w') t2 -= amt;
  if(key == 'W') t2 += amt;
  if(key == 'e') t3 -= amt;
  if(key == 'E') t3 += amt;
  t1 = constrain(t1,minT,maxT);
  t2 = constrain(t2,minT,maxT);
  t3 = constrain(t3,minT,maxT);
  dk();
}

void ik() {
  if (xp < minX) { xp = minX; }
  if (xp > maxX) { xp = maxX; }
  if (yp < minX) { yp = minX; }
  if (yp > maxX) { yp = maxX; }
  if (zp < minZ) { zp = minZ; }
  if (zp > maxZ) { zp = maxZ; }

  validPosition = true;
  //set the first angle
  float theta1 = rotateYZ(xp, yp, zp);
  if (theta1 != 999) {
    float theta2 = rotateYZ(xp*cos120 + yp*sin120, yp*cos120-xp*sin120, zp);  // rotate coords to +120 deg
    if (theta2 != 999) {
      float theta3 = rotateYZ(xp*cos120 - yp*sin120, yp*cos120+xp*sin120, zp);  // rotate coords to -120 deg
      if (theta3 != 999) {
        //we succeeded - point exists
        if (theta1 <= maxT && theta2 <= maxT && theta3 <= maxT && theta1 >= minT && theta2 >= minT && theta3 >= minT ) { //bounds check
          t1 = theta1;
          t2 = theta2;
          t3 = theta3;
        } else {
          validPosition = false;
        }

      } else {
        validPosition = false;
      }
    } else {
      validPosition = false;
    }
  } else {
    validPosition = false;
  }

  //uh oh, we failed, revert to our last known good positions
  if ( !validPosition ) {
    xp = prevX;
    yp = prevY;
    zp = prevZ;
  }

}

void dk() {
  validPosition = true;

  float t = (f-e)*tan30/2;
  float dtr = PI/(float)180.0;

  float theta1 = dtr*t1;
  float theta2 = dtr*t2;
  float theta3 = dtr*t3;

  float y1 = -(t + rf*cos(theta1));
  float z1 = -rf*sin(theta1);

  float y2 = (t + rf*cos(theta2))*sin30;
  float x2 = y2*tan60;
  float z2 = -rf*sin(theta2);

  float y3 = (t + rf*cos(theta3))*sin30;
  float x3 = -y3*tan60;
  float z3 = -rf*sin(theta3);

  float dnm = (y2-y1)*x3-(y3-y1)*x2;

  float w1 = y1*y1 + z1*z1;
  float w2 = x2*x2 + y2*y2 + z2*z2;
  float w3 = x3*x3 + y3*y3 + z3*z3;

  // x = (a1*z + b1)/dnm
  float a1 = (z2-z1)*(y3-y1)-(z3-z1)*(y2-y1);
  float b1 = -((w2-w1)*(y3-y1)-(w3-w1)*(y2-y1))/2.0;

  // y = (a2*z + b2)/dnm;
  float a2 = -(z2-z1)*x3+(z3-z1)*x2;
  float b2 = ((w2-w1)*x3 - (w3-w1)*x2)/2.0;

  // a*z^2 + b*z + c = 0
  float a = a1*a1 + a2*a2 + dnm*dnm;
  float b = 2*(a1*b1 + a2*(b2-y1*dnm) - z1*dnm*dnm);
  float c = (b2-y1*dnm)*(b2-y1*dnm) + b1*b1 + dnm*dnm*(z1*z1 - re*re);

  // discriminant
  float d = b*b - (float)4.0*a*c;
  if (d < 0) { validPosition = false; }

  zp = -(float)0.5*(b+sqrt(d))/a;
  xp = (a1*zp + b1)/dnm;
  yp = (a2*zp + b2)/dnm;

  if (xp >= minX && xp <= maxX&& yp >= minX && yp <= maxX && zp >= minZ & zp <= maxZ) {  //bounds check
  } else {
    validPosition = false;
  }

  if ( !validPosition ) {    
    xp = prevX;
    yp = prevY;
    zp = prevZ;
    t1 = prevT1;
    t2 = prevT2;
    t3 = prevT3;  
  }

}

void  storePrev() {
  prevX = xp;
  prevY = yp;
  prevZ = zp;
  prevT1 = t1;
  prevT2 = t2;
  prevT3 = t3;
}

float rotateYZ(float x0, float y0, float z0) {
  float y1 = -0.5 * 0.57735 * f; // f/2 * tg 30
  y0 -= 0.5 * 0.57735    * e;    // shift center to edge
  // z = a + b*y
  float a = (x0*x0 + y0*y0 + z0*z0 +rf*rf - re*re - y1*y1)/(2*z0);
  float b = (y1-y0)/z0;
  // discriminant
  float d = -(a+b*y1)*(a+b*y1)+rf*(b*b*rf+rf); 
  if (d < 0) return 999; // non-existing point
  float yj = (y1 - a*b - sqrt(d))/(b*b + 1); // choosing outer point
  float zj = a + b*yj;
  return 180.0*atan(-zj/(y1 - yj))/PI + ((yj>y1)?180.0:0.0);
} 

问题是,在可视化时,下半部分会改变长度(正如您在打印的消息中看到的那样,它不应该,这进一步增加了我的困惑。

我在Java / Processing中使用了提供的C代码,但编程语言最不重要。

[按spektre编辑]

我只需要添加这张图片(出于教学原因)。

  • 内衬的废话不是掌握运动能力的最佳方式
  • 据我所知,电机的底座位于上三角平面上的此图像上
  • 并且工具位于底部三角形平面

delta robot

1 个答案:

答案 0 :(得分:1)

我会这样做(图形解决方案的代数表示):

  1. 计算F1,F2,F3;
  2. 解决系统

    // spheres from Ji to Ei ... parallelograms (use lower Z half sphere)
    (x1-J1.x)^2 + (y1-J1.y)^2 +(z1-J1.z)^2 = re^2 
    (x2-J2.x)^2 + (y2-J2.y)^2 +(z2-J2.z)^2 = re^2
    (x3-J3.x)^2 + (y3-J3.y)^2 +(z3-J3.z)^2 = re^2
    // Ei lies on the sphere
    E1=(x1,y1,z1)
    E2=(x2,y2,z2)
    E3=(x3,y3,z3)
    // Ei is parallel to Fi ... coordinate system must be adjusted 
    // so base triangles are parallel with XY-plane
    z1=z2
    z1=z3
    z2=z3
    // distance between any Ei Ej must be always q
    // else it is invalid position (kinematics get stuck or even damage)
    |E1-E2|=q
    |E1-E3|=q
    |E2-E3|=q
    // midpoint is just average of Ei
    E=(E1+E2+E3)/3
    
    • 其中q是关节距离| Ei-E |这是常数
  3. <强> [注释]

    不要手动解决

    • 使用派生或某事来获得代数解
    • 并仅使用有效的解决方案
    • 其二次系统因此很可能会有更多解决方案,因此您必须检查正确的

    一个愚蠢的问题为什么不解决反向运动学

    • 很可能是你需要的(如果你只是不做可视化)
    • 在这种情况下也有点简单

    当你只使用直接运动时

    • 我并不完全相信你应该驾驶所有3个关节
    • 最有可能只驾驶其中的两个
    • 并计算3.th以使运动学保持在有效位置

    [EDIT1]

    我觉得有一种简化:

    1. Ti =将Z向Z轴平移q(平行于XY平面)
    2. 现在如果您只需要找到Ti的三个球体的交叉点

      • 这一点是E
    3. 所以Ei现在是E的简单翻译(从Ji翻译中反过来)

    4. PS。我希望你知道如何计算角度,当你拥有所有的分数......