hadoop:在完成地图之前,刷新地图输出和完成溢出之间发生了减少

时间:2013-08-07 11:13:25

标签: hadoop mapreduce

我是hadoop的新手,我正在尝试src / examples中的示例wordcount / secondsort。

wordcount测试环境:

输入:

file01.txt

file02.txt

secondsort测试环境:

输入:

sample01.txt

sample02.txt

这意味着两个测试都有2个处理路径。 我打印一些日志信息试图理解map / reduce的过程。

查看开始刷新地图输出完成溢出0 之间的区别: wordcount程序在最终减少之前还有另外两个reduce任务 secondsort程序只做一次reduce就完成了。 由于这些程序是如此“小”,我不认为io.sort.mb / io.sort.refactor会影响这一点。

有人可以解释一下吗?

感谢您对我破损的Englisth和长日志的耐心。

这些是日志信息(我删除了一些无用的信息以缩短日期信息):

wordcount log:

[hadoop@localhost ~]$ hadoop jar test.jar com.abc.example.test wordcount output
13/08/07 18:14:05 INFO mapred.FileInputFormat: Total input paths to process : 2
13/08/07 18:14:06 INFO mapred.JobClient: Running job: job_local_0001
13/08/07 18:14:06 INFO util.ProcessTree: setsid exited with exit code 0
...
13/08/07 18:14:06 INFO mapred.MapTask: numReduceTasks: 1
13/08/07 18:14:06 INFO mapred.MapTask: io.sort.mb = 100
13/08/07 18:14:06 INFO mapred.MapTask: data buffer = 79691776/99614720
13/08/07 18:14:06 INFO mapred.MapTask: record buffer = 262144/327680
Mapper: 0 | Hello Hadoop GoodBye Hadoop
13/08/07 18:14:06 INFO mapred.MapTask: **Starting flush of map output**
Reduce: GoodBye
Reduce: GoodBye | 1
Reduce: Hadoop
Reduce: Hadoop | 1
Reduce: Hadoop | 1
Reduce: Hello
Reduce: Hello | 1
13/08/07 18:14:06 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
13/08/07 18:14:06 INFO mapred.LocalJobRunner: hdfs://localhost:8020/user/hadoop/wordcount/file02.txt:0+28
13/08/07 18:14:06 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
13/08/07 18:14:06 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@4d16ffed
13/08/07 18:14:06 INFO mapred.MapTask: numReduceTasks: 1
13/08/07 18:14:06 INFO mapred.MapTask: io.sort.mb = 100
13/08/07 18:14:06 INFO mapred.MapTask: data buffer = 79691776/99614720
13/08/07 18:14:06 INFO mapred.MapTask: record buffer = 262144/327680
13/08/07 18:14:06 INFO mapred.MapTask: **Starting flush of map output**
Reduce: Bye
Reduce: Bye | 1
Reduce: Hello
Reduce: Hello | 1
Reduce: world
Reduce: world | 1
Reduce: world | 1
13/08/07 18:14:06 INFO mapred.MapTask: **Finished spill 0**
13/08/07 18:14:06 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
13/08/07 18:14:06 INFO mapred.LocalJobRunner: hdfs://localhost:8020/user/hadoop/wordcount/file01.txt:0+22
13/08/07 18:14:06 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
13/08/07 18:14:06 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@1f3c0665
13/08/07 18:14:06 INFO mapred.LocalJobRunner: 
13/08/07 18:14:06 INFO mapred.Merger: Merging 2 sorted segments
13/08/07 18:14:06 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 77 bytes
13/08/07 18:14:06 INFO mapred.LocalJobRunner: 
Reduce: Bye
Reduce: Bye | 1
Reduce: GoodBye
Reduce: GoodBye | 1
Reduce: Hadoop
Reduce: Hadoop | 2
Reduce: Hello
Reduce: Hello | 1
Reduce: Hello | 1
Reduce: world
Reduce: world | 2
13/08/07 18:14:06 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
...
13/08/07 18:14:07 INFO mapred.JobClient:     Reduce input groups=5
13/08/07 18:14:07 INFO mapred.JobClient:     Combine output records=6
13/08/07 18:14:07 INFO mapred.JobClient:     Physical memory (bytes) snapshot=0
13/08/07 18:14:07 INFO mapred.JobClient:     Reduce output records=5
13/08/07 18:14:07 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=0
13/08/07 18:14:07 INFO mapred.JobClient:     Map output records=8

secondsort log info:

[hadoop@localhost ~]$ hadoop jar example.jar com.abc.example.example secondsort output
13/08/07 17:00:11 INFO input.FileInputFormat: Total input paths to process : 2
13/08/07 17:00:11 WARN snappy.LoadSnappy: Snappy native library not loaded
13/08/07 17:00:12 INFO mapred.JobClient: Running job: job_local_0001
13/08/07 17:00:12 INFO util.ProcessTree: setsid exited with exit code 0
13/08/07 17:00:12 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@57d94c7b
13/08/07 17:00:12 INFO mapred.MapTask: io.sort.mb = 100
13/08/07 17:00:12 INFO mapred.MapTask: data buffer = 79691776/99614720
13/08/07 17:00:12 INFO mapred.MapTask: record buffer = 262144/327680
Map: 0 | 5 49
Map: 5 | 9 57
Map: 10 | 19 46
Map: 16 | 3 21
Map: 21 | 9 48
Map: 26 | 7 57
... 
13/08/07 17:00:12 INFO mapred.MapTask: **Starting flush of map output**
13/08/07 17:00:12 INFO mapred.MapTask: **Finished spill 0**
13/08/07 17:00:12 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
13/08/07 17:00:12 INFO mapred.LocalJobRunner: 
13/08/07 17:00:12 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
13/08/07 17:00:12 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@f3a1ea1
13/08/07 17:00:12 INFO mapred.MapTask: io.sort.mb = 100
13/08/07 17:00:12 INFO mapred.MapTask: data buffer = 79691776/99614720
13/08/07 17:00:12 INFO mapred.MapTask: record buffer = 262144/327680
Map: 0 | 20 21
Map: 6 | 50 51
Map: 12 | 50 52
Map: 18 | 50 53
Map: 24 | 50 54
...
13/08/07 17:00:12 INFO mapred.MapTask: **Starting flush of map output**
13/08/07 17:00:12 INFO mapred.MapTask: **Finished spill 0**
13/08/07 17:00:12 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
13/08/07 17:00:12 INFO mapred.LocalJobRunner: 
13/08/07 17:00:12 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
13/08/07 17:00:12 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@cee4e92
13/08/07 17:00:12 INFO mapred.LocalJobRunner: 
13/08/07 17:00:12 INFO mapred.Merger: Merging 2 sorted segments
13/08/07 17:00:12 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 1292 bytes
13/08/07 17:00:12 INFO mapred.LocalJobRunner: 
Reduce: 0:35 -----------------
Reduce: 0:35 | 35
Reduce: 0:54 -----------------
... 
13/08/07 17:00:12 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
13/08/07 17:00:12 INFO mapred.LocalJobRunner: 
13/08/07 17:00:12 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
13/08/07 17:00:12 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to output
13/08/07 17:00:12 INFO mapred.LocalJobRunner: reduce > reduce
13/08/07 17:00:12 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
13/08/07 17:00:13 INFO mapred.JobClient:  map 100% reduce 100%
13/08/07 17:00:13 INFO mapred.JobClient: Job complete: job_local_0001
13/08/07 17:00:13 INFO mapred.JobClient: Counters: 22
13/08/07 17:00:13 INFO mapred.JobClient:   File Output Format Counters 
13/08/07 17:00:13 INFO mapred.JobClient:     Bytes Written=4787
...
13/08/07 17:00:13 INFO mapred.JobClient:     SPLIT_RAW_BYTES=236
13/08/07 17:00:13 INFO mapred.JobClient:     Reduce input records=92

PS:主要()s供其他人查看。

单词计数:

public static void main(String[] args) throws Exception {
     JobConf conf = new JobConf(test.class);
     conf.setJobName("wordcount");

     conf.setOutputKeyClass(Text.class);
     conf.setOutputValueClass(IntWritable.class);

     conf.setMapperClass(Map.class);
     conf.setCombinerClass(Reduce.class);
     conf.setReducerClass(Reduce.class);

     conf.setInputFormat(TextInputFormat.class);
     conf.setOutputFormat(TextOutputFormat.class);

     FileInputFormat.setInputPaths(conf, new Path(args[0]));
     FileOutputFormat.setOutputPath(conf, new Path(args[1]));

     JobClient.runJob(conf);
   }

secondsort:

public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException
    {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "secondarysort");
        job.setJarByClass(example.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setPartitionerClass(FirstPartitioner.class);
        job.setGroupingComparatorClass(GroupingComparator.class);

        job.setMapOutputKeyClass(IntPair.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

2 个答案:

答案 0 :(得分:1)

合并输出记录= 6

这就说明了一切:reduce函数既可用作组合器,也可用作减速器。所以你看到的是组合器的输出。当输出溢出时(有时)调用组合器。

我认为你应该添加你的代码,至少是main()中的部分,以向我们展示你的工作是如何设置的。这样可以更轻松地回答您的问题。

答案 1 :(得分:-1)

我认为

等行
  

减少:GoodBye

     

减少:GoodBye | 1

是源代码中的println(...),您需要检查源代码。