有没有办法随机洗牌哪些键对应哪些值?我找到了random.sample,但我想知道是否有更多的pythonic /更快的方法。
示例:a = {"one":1,"two":2,"three":3}
洗牌:a_shuffled = {"one":2,"two":3,"three":1}
答案 0 :(得分:6)
In [47]: import random
In [48]: keys = a.keys()
In [49]: values = a.values()
In [50]: random.shuffle(values)
In [51]: a_shuffled = dict(zip(keys, values))
In [52]: a_shuffled
Out[52]: {'one': 2, 'three': 1, 'two': 3}
或者,更精辟的是:
In [56]: dict(zip(a.keys(), random.sample(a.values(), len(a))))
Out[56]: {'one': 3, 'three': 2, 'two': 1}
(但我想这是你已经提出的解决方案。)
请注意,虽然使用random.sample
比较简单,但使用random.shuffle
会更快一些:
import random
import string
def using_shuffle(a):
keys = a.keys()
values = a.values()
random.shuffle(values)
return dict(zip(keys, values))
def using_sample(a):
return dict(zip(a.keys(), random.sample(a.values(), len(a))))
N = 10000
keys = [''.join(random.choice(string.letters) for j in range(4)) for i in xrange(N)]
a = dict(zip(keys, range(N)))
In [71]: %timeit using_shuffle(a)
100 loops, best of 3: 5.14 ms per loop
In [72]: %timeit using_sample(a)
100 loops, best of 3: 5.78 ms per loop
答案 1 :(得分:3)
E.g.
# made for python 2.7 but should be able to work in python 3
import random
import numpy as np
from time import time
def given_seq():
#general example
start = time()
a = {"one":1,"two":2,"three":3}
keys = a.keys()
random.shuffle(keys)
a = dict(zip(keys, a.values()))
#Large example
a = dict(zip(range(0,100000), range(1,100001)))
def random_shuffle():
keys = a.keys()
random.shuffle(keys)
b = dict(zip(keys, a.values()))
def np_random_shuffle():
keys = a.keys()
np.random.shuffle(keys)
b = dict(zip(keys, a.values()))
def np_random_permutation():
#more concise and using numpy's permutation option
b = dict(zip(np.random.permutation(a.keys()), a.values()))
#if you precompute the array key as a numpy array
def np_random_keys_choice():
akeys = np.array(a.keys())
return dict(zip(akeys[np.random.permutation(len(akeys))],a.values()))
def np_random_keys_shuffle():
key_indexes = np.arange(len(a.keys()))
np.random.shuffle(key_indexes)
return dict(zip(np.array(a.keys())[key_indexes],a.values()))
#fixed dictionary size
key_indexes = np.arange(len(a.keys()))
def np_random_fixed_keys_shuffle():
np.random.shuffle(key_indexes)
return dict(zip(np.array(a.keys())[key_indexes],a.values()))
#so dstack actually slows things down
def np_random_shuffle_dstack():
keys = a.keys()
np.random.shuffle(keys)
return dict(np.dstack((keys, a.values()))[0])
if __name__=='__main__':
import timeit
# i can use global namespace level introspection to automate the below line but it's not needed yet
for func in ['given_seq', 'random_shuffle', 'np_random_shuffle', 'np_random_permutation', 'np_random_keys_choice',
'np_random_keys_shuffle', 'np_random_fixed_keys_shuffle']:
print func, timeit.timeit("{}()".format(func), setup = "from __main__ import {}".format(''.join(func)), number = 200)
given_seq 0.00103783607483 random_shuffle 23.869166851 np_random_shuffle 16.3060112 np_random_permutation 21.9921720028 np_random_keys_choice 21.8105020523 np_random_keys_shuffle 22.4905178547 np_random_fixed_keys_shuffle 21.8256559372
使用选择/置换可能看起来更好 - 但它无论如何都不会更快。不幸的是,复制通常很慢,除非它是一个小尺寸 - 并且没有办法传递指针/引用而不必占用额外的一行 - 尽管我辩论这是否会使它'非pythonic'
即如果您在python会话中查看Zen of Python或只执行import this
,其中一行是:
虽然实用性胜过纯洁。
所以它可以解释当然:)