给定scipy.sparse.crs_matrix
,我想提取Numpy密集代数中的子矩阵表示为
A[0::2, 0::2]
即,A_{new}(i,j) = A(2*i,2*j)
(“棋盘黑方矩阵”)。
答案 0 :(得分:1)
如果您首先将矩阵转换为COO格式,那么这是一块蛋糕:
def sps_black_squares(a):
a = a.tocoo()
idx = (a.row % 2 == 0) & (a.col % 2 == 0)
new_shape = tuple((j-1) // 2 + 1 for j in a.shape)
return sps.csr_matrix((a.data[idx], (a.row[idx]//2, a.col[idx]//2)),
shape=new_shape)
%timeit sps_black_squares(a)
1000 loops, best of 3: 315 us per loop
%timeit sps.csr_matrix(a.toarray()[::2, ::2])
100 loops, best of 3: 6.55 ms per loop
np.allclose(sps_black_squares(a).toarray(), a.toarray()[::2, ::2])
Out[119]: True