我在java中做了一些内在优化的矩阵包装器(在JNI的帮助下)。需要肯定这一点,你能给出关于矩阵优化的一些提示吗?我要实现的是:
Matrix可以表示为四组缓冲区/数组,一组用于水平访问,一组用于垂直访问,一组用于对角访问,命令缓冲区仅在需要时计算矩阵元素。这是一个例子。
Matrix signature:
0 1 2 3
4 5 6 7
8 9 1 3
3 5 2 9
First(hroizontal) set:
horSet[0]={0,1,2,3} horSet[1]={4,5,6,7} horSet[2]={8,9,1,3} horSet[3]={3,5,2,9}
Second(vertical) set:
verSet[0]={0,4,8,3} verSet[1]={1,5,9,5} verSet[2]={2,6,1,2} verSet[3]={3,7,3,9}
Third(optional) a diagonal set:
diagS={0,5,1,9} //just in case some calculation needs this
Fourth(calcuation list, in a "one calculation one data" fashion) set:
calc={0,2,1,3,2,5} --->0 means multiply by the next element
1 means add the next element
2 means divide by the next element
so this list means
( (a[i]*2)+3 ) / 5 when only a[i] is needed.
Example for fourth set:
A.mult(2), A.sum(3), A.div(5), A.mult(B)
(to list) (to list) (to list) (calculate *+/ just in time when A is needed )
so only one memory access for four operations.
loop start
a[i] = b[i] * ( ( a[i]*2) +3 ) / 5 only for A.mult(B)
loop end
如上所示,当需要访问列元素时,第二组提供连续访问。没有飞跃。第一组水平访问也达到了同样的效果。
这应该让一些事情变得更容易,有些事情更难:
Easier:
**Matrix transpozing operation.
Just swapping the pointers horSet[x] and verSet[x] is enough.
**Matrix * Matrix multiplication.
One matrix gives one of its horizontal set and other matrix gives vertical buffer.
Dot product of these must be highly parallelizable for intrinsics/multithreading.
If the multiplication order is inverse, then horizontal and verticals are switched.
**Matrix * vector multiplication.
Same as above, just a vector can be taken as horizontal or vertical freely.
Harder:
** Doubling memory requirement is bad for many cases.
** Initializing a matrix takes longer.
** When a matrix is multiplied from left, needs an update vertical-->horizontal
sets if its going to be multiplied from right after.(same for opposite)
(if a tranposition is taken between, this does not count)
Neutral:
** Same matrix can be multiplied with two other matrices to get two different
results such as A=A*B(saved in horizontal sets) A=C*A(saved in vertical sets)
then A=A*A gives A*B*C*A(in horizontal) and C*A*A*B (in vertical) without
copying A.
** If a matrix always multiplied from left or always from right, every access
and multiplication will not need update and be contiguous on ram.
** Only using horizontals before transpozing, only using verticals after,
should not break any rules.
主要目的是使用矩阵(8的倍数,8的倍数)并应用具有多个线程的avx内在函数(每个步骤同时在一个集合上工作)。
我只实现了vector * vector dotproduct。 如果你掌握了编程方法,我会进入这个方向。
我写的dotproduct(带内在函数)比循环展开的版本快6倍(这是乘法的两倍快),当在包装器中启用多线程时,它也会停留在内存带宽上限(8x - >使用接近我的ddr3限制的接近20GB / s)已经尝试过opencl,它对于cpu来说有点慢,但对于gpu来说非常好。
谢谢。
编辑:“块矩阵”缓冲区如何执行?当乘以大矩阵时,小补丁以特殊方式相乘,缓存可能用于减少主存储器访问。但是,这需要在垂直 - 水平 - 对角线和此块之间的矩阵乘法之间进行更多更新。
答案 0 :(得分:1)
这实际上相当于缓存转置。听起来你打算急切地这样做;我只是在需要时才计算换位,并在需要时再次记住它。这样,如果你从未需要它,那么它永远不会被计算出来。
答案 1 :(得分:1)
有几个库使用Expression Templates来为一系列矩阵运算启用非常具体的优化函数。
The C++ Programming Lanuage还有一章关于“融合操作”(29.5.4,第4版)。
这样可以连接语句la:
M = A*B.transp(); // where M, A, B are matrices
在这种情况下,您需要有3个课程:
class Matrix;
class Transposed
{
public:
Transposed(Matrix &matrix) : m_matrix(matrix) {}
Matrix & obj (void) { return m_matrix; }
private:
Matrix & m_matrix;
};
class MatrixMatrixMulTransPosed
{
public:
MatrixMatrixMulTransPosed(Matrix &matrix, Transposed &trans)
: m_matrix(matrix), m_transposed(trans.obj()) {}
Matrix & matrix (void) { return m_matrix; }
Matrix & transposed (void) { return m_transposed; }
private:
Matrix & m_matrix;
Matrix & m_transposed;
};
class Matrix
{
public:
MatrixMatrixMulTransPosed operator* (Transposed &rhs)
{
return MatrixMatrixMulTransPosed(*this, rhs);
}
Matrix& operator= (MatrixMatrixMulTransPosed &mmtrans)
{
// Actual computation goes here and is stored in this.
// using mmtrans.matrix() and mmtrans.transposed()
}
};
你可以推进这个概念,以便能够为每个任何平均值的计算都设置一个特殊的函数。