我对numpy.dot产品有些怀疑。
我定义了一个矩阵6x6,如:
C=np.zeros((6,6))
C[0,0], C[1,1], C[2,2] = 129.5, 129.5, 129.5
C[3,3], C[4,4], C[5,5] = 25, 25, 25
C[0,1], C[0,2] = 82, 82
C[1,0], C[1,2] = 82, 82
C[2,0], C[2,1] = 82, 82
然后我通过使用多维数组
以4级张量重铸它def long2short(m, n):
"""
Given two indices m and n of the stiffness tensor the function
return i the index of the Voigt matrix
i = long2short(m,n)
"""
if m == n:
i = m
elif (m == 1 and n == 2) or (m == 2 and n == 1):
i = 3
elif (m == 0 and n == 2) or (m == 2 and n == 0):
i = 4
elif (m == 0 and n == 1) or (m == 1 and n == 0):
i = 5
return i
c=np.zeros((3,3,3,3))
for m in range(3):
for n in range(3):
for o in range(3):
for p in range(3):
i = long2short(m, n)
j = long2short(o, p)
c[m, n, o, p] = C[i, j]
然后我想通过使用我定义的旋转矩阵来改变张量的坐标参考系:
Q=np.array([[sqrt(2.0/3), 0, 1.0/sqrt(3)], [-1.0/sqrt(6), 1.0/sqrt(2), 1.0/sqrt(3)], [-1.0/sqrt(6), -1.0/sqrt(2), 1.0/sqrt(3)]])
Qt = Q.transpose()
矩阵是正交的(虽然数值精度并不完美):
In [157]: np.dot(Q, Qt)
Out[157]:
array([[ 1.00000000e+00, 4.28259858e-17, 4.28259858e-17],
[ 4.28259858e-17, 1.00000000e+00, 2.24240114e-16],
[ 4.28259858e-17, 2.24240114e-16, 1.00000000e+00]])
但是为什么我要表演呢?
In [158]: a=np.dot(Q,Qt)
In [159]: c_mat=np.dot(a, c)
In [160]: a1 = np.dot(Qt, c)
In [161]: c_mat1=np.dot(Q, a1)
我得到了c_mat(= c)的预期值,但c_mat1却没有?在多维数组上使用点是否存在一些不足之处?
答案 0 :(得分:12)
问题是多维数组的np.dot(a,b)
使得a
的最后一个维度的点积与倒数第二个维度为b
:
np.dot(a,b) == np.tensordot(a, b, axes=([-1],[2]))
如您所见,它不能用作多维数组的矩阵乘法。使用np.tensordot()
可以控制要执行点积的每个输入中的axes
。例如,要在c_mat1
中获得相同的结果,您可以执行以下操作:
c_mat1 = np.tensordot(Q, a1, axes=([-1],[0]))
这就是强制类似矩阵乘法的行为。