在软件中实现SSE 4.2的CRC32C

时间:2013-07-15 00:27:55

标签: c++ polynomial-math crc32

所以我的设计包含了CRC32C校验和,以确保数据没有被损坏。我决定使用CRC32C,因为如果运行软件的计算机支持SSE 4.2,我可以同时拥有软件版本和硬件加速版本

我将使用英特尔的开发人员手册(第2A卷),该手册似乎提供了crc32指令背后的算法。但是,我运气不好。英特尔的开发者指南说明如下:

BIT_REFLECT32: DEST[31-0] = SRC[0-31]
MOD2: Remainder from Polynomial division modulus 2

TEMP1[31-0] <- BIT_REFLECT(SRC[31-0])
TEMP2[31-0] <- BIT_REFLECT(DEST[31-0])
TEMP3[63-0] <- TEMP1[31-0] << 32
TEMP4[63-0] <- TEMP2[31-0] << 32
TEMP5[63-0] <- TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0] <- TEMP5[63-0] MOD2 0x11EDC6F41
DEST[31-0]  <- BIT_REFLECT(TEMP6[31-0])

现在,据我所知,我已经完成了正确开始TEMP6行的所有事情,但我想我可能误解了多项式除法,或者错误地实现了它。如果我的理解是正确的,1 / 1 mod 2 = 10 / 1 mod 2 = 0和两个除零都是未定义的。

我不明白的是64位和33位操作数的二进制除法是如何工作的。如果SRC0x00000000DEST0xFFFFFFFF,则TEMP5[63-32]将为所有设置位,而TEMP5[31-0]将为所有未设置的位。< / p>

如果我要使用TEMP5中的位作为分子,则由于多项式11EDC6F41仅为33位长(因此将其转换为64位),因此将有30个除以零的除法无符号整数使前30位未设置),因此分母未设置为30位。

但是,如果我使用多项式作为分子,则TEMP5的底部32位未设置,导致在那里除以零,并且结果的前30位将为零,如分子的前30位将为零,为0 / 1 mod 2 = 0

我是否误解了这是如何运作的?只是简单地遗漏了什么或者英特尔在其文档中遗漏了一些关键步骤?

我之所以使用英特尔开发人员指南看似他们使用的算法是因为他们使用了33位多项式,我想让输出相同,这在我使用32位时没有发生多项式1EDC6F41(如下所示)。

uint32_t poly = 0x1EDC6F41, sres, crcTable[256], data = 0x00000000;

for (n = 0; n < 256; n++) {
    sres = n;
    for (k = 0; k < 8; k++)
        sres = (sres & 1) == 1 ? poly ^ (sres >> 1) : (sres >> 1);
    crcTable[n] = sres;
}
sres = 0xFFFFFFFF;

for (n = 0; n < 4; n++) {
    sres = crcTable[(sres ^ data) & 0xFF] ^ (sres >> 8);
}

以上代码生成4138093821作为输出,crc32操作码使用输入2346497208生成0x00000000

对不起,如果这些内容写得不好或难以理解,对我来说已经很晚了。

3 个答案:

答案 0 :(得分:65)

以下是CRC-32C的软件和硬件版本。软件版本经过优化,一次可处理8个字节。硬件版本经过优化,可在单个内核上有效并行运行三条crc32q指令,因为该指令的吞吐量为一个周期,但延迟为三个周期。

/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
 * Copyright (C) 2013 Mark Adler
 * Version 1.1  1 Aug 2013  Mark Adler
 */

/*
  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the author be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  Mark Adler
  madler@alumni.caltech.edu
 */

/* Use hardware CRC instruction on Intel SSE 4.2 processors.  This computes a
   CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc.  A software
   version is provided as a fall-back, as well as for speed comparisons. */

/* Version history:
   1.0  10 Feb 2013  First version
   1.1   1 Aug 2013  Correct comments on why three crc instructions in parallel
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <pthread.h>

/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78

/* Table for a quadword-at-a-time software crc. */
static pthread_once_t crc32c_once_sw = PTHREAD_ONCE_INIT;
static uint32_t crc32c_table[8][256];

/* Construct table for software CRC-32C calculation. */
static void crc32c_init_sw(void)
{
    uint32_t n, crc, k;

    for (n = 0; n < 256; n++) {
        crc = n;
        crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        crc32c_table[0][n] = crc;
    }
    for (n = 0; n < 256; n++) {
        crc = crc32c_table[0][n];
        for (k = 1; k < 8; k++) {
            crc = crc32c_table[0][crc & 0xff] ^ (crc >> 8);
            crc32c_table[k][n] = crc;
        }
    }
}

/* Table-driven software version as a fall-back.  This is about 15 times slower
   than using the hardware instructions.  This assumes little-endian integers,
   as is the case on Intel processors that the assembler code here is for. */
static uint32_t crc32c_sw(uint32_t crci, const void *buf, size_t len)
{
    const unsigned char *next = buf;
    uint64_t crc;

    pthread_once(&crc32c_once_sw, crc32c_init_sw);
    crc = crci ^ 0xffffffff;
    while (len && ((uintptr_t)next & 7) != 0) {
        crc = crc32c_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
        len--;
    }
    while (len >= 8) {
        crc ^= *(uint64_t *)next;
        crc = crc32c_table[7][crc & 0xff] ^
              crc32c_table[6][(crc >> 8) & 0xff] ^
              crc32c_table[5][(crc >> 16) & 0xff] ^
              crc32c_table[4][(crc >> 24) & 0xff] ^
              crc32c_table[3][(crc >> 32) & 0xff] ^
              crc32c_table[2][(crc >> 40) & 0xff] ^
              crc32c_table[1][(crc >> 48) & 0xff] ^
              crc32c_table[0][crc >> 56];
        next += 8;
        len -= 8;
    }
    while (len) {
        crc = crc32c_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
        len--;
    }
    return (uint32_t)crc ^ 0xffffffff;
}

/* Multiply a matrix times a vector over the Galois field of two elements,
   GF(2).  Each element is a bit in an unsigned integer.  mat must have at
   least as many entries as the power of two for most significant one bit in
   vec. */
static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec)
{
    uint32_t sum;

    sum = 0;
    while (vec) {
        if (vec & 1)
            sum ^= *mat;
        vec >>= 1;
        mat++;
    }
    return sum;
}

/* Multiply a matrix by itself over GF(2).  Both mat and square must have 32
   rows. */
static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat)
{
    int n;

    for (n = 0; n < 32; n++)
        square[n] = gf2_matrix_times(mat, mat[n]);
}

/* Construct an operator to apply len zeros to a crc.  len must be a power of
   two.  If len is not a power of two, then the result is the same as for the
   largest power of two less than len.  The result for len == 0 is the same as
   for len == 1.  A version of this routine could be easily written for any
   len, but that is not needed for this application. */
static void crc32c_zeros_op(uint32_t *even, size_t len)
{
    int n;
    uint32_t row;
    uint32_t odd[32];       /* odd-power-of-two zeros operator */

    /* put operator for one zero bit in odd */
    odd[0] = POLY;              /* CRC-32C polynomial */
    row = 1;
    for (n = 1; n < 32; n++) {
        odd[n] = row;
        row <<= 1;
    }

    /* put operator for two zero bits in even */
    gf2_matrix_square(even, odd);

    /* put operator for four zero bits in odd */
    gf2_matrix_square(odd, even);

    /* first square will put the operator for one zero byte (eight zero bits),
       in even -- next square puts operator for two zero bytes in odd, and so
       on, until len has been rotated down to zero */
    do {
        gf2_matrix_square(even, odd);
        len >>= 1;
        if (len == 0)
            return;
        gf2_matrix_square(odd, even);
        len >>= 1;
    } while (len);

    /* answer ended up in odd -- copy to even */
    for (n = 0; n < 32; n++)
        even[n] = odd[n];
}

/* Take a length and build four lookup tables for applying the zeros operator
   for that length, byte-by-byte on the operand. */
static void crc32c_zeros(uint32_t zeros[][256], size_t len)
{
    uint32_t n;
    uint32_t op[32];

    crc32c_zeros_op(op, len);
    for (n = 0; n < 256; n++) {
        zeros[0][n] = gf2_matrix_times(op, n);
        zeros[1][n] = gf2_matrix_times(op, n << 8);
        zeros[2][n] = gf2_matrix_times(op, n << 16);
        zeros[3][n] = gf2_matrix_times(op, n << 24);
    }
}

/* Apply the zeros operator table to crc. */
static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc)
{
    return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
           zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}

/* Block sizes for three-way parallel crc computation.  LONG and SHORT must
   both be powers of two.  The associated string constants must be set
   accordingly, for use in constructing the assembler instructions. */
#define LONG 8192
#define LONGx1 "8192"
#define LONGx2 "16384"
#define SHORT 256
#define SHORTx1 "256"
#define SHORTx2 "512"

/* Tables for hardware crc that shift a crc by LONG and SHORT zeros. */
static pthread_once_t crc32c_once_hw = PTHREAD_ONCE_INIT;
static uint32_t crc32c_long[4][256];
static uint32_t crc32c_short[4][256];

/* Initialize tables for shifting crcs. */
static void crc32c_init_hw(void)
{
    crc32c_zeros(crc32c_long, LONG);
    crc32c_zeros(crc32c_short, SHORT);
}

/* Compute CRC-32C using the Intel hardware instruction. */
static uint32_t crc32c_hw(uint32_t crc, const void *buf, size_t len)
{
    const unsigned char *next = buf;
    const unsigned char *end;
    uint64_t crc0, crc1, crc2;      /* need to be 64 bits for crc32q */

    /* populate shift tables the first time through */
    pthread_once(&crc32c_once_hw, crc32c_init_hw);

    /* pre-process the crc */
    crc0 = crc ^ 0xffffffff;

    /* compute the crc for up to seven leading bytes to bring the data pointer
       to an eight-byte boundary */
    while (len && ((uintptr_t)next & 7) != 0) {
        __asm__("crc32b\t" "(%1), %0"
                : "=r"(crc0)
                : "r"(next), "0"(crc0));
        next++;
        len--;
    }

    /* compute the crc on sets of LONG*3 bytes, executing three independent crc
       instructions, each on LONG bytes -- this is optimized for the Nehalem,
       Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
       throughput of one crc per cycle, but a latency of three cycles */
    while (len >= LONG*3) {
        crc1 = 0;
        crc2 = 0;
        end = next + LONG;
        do {
            __asm__("crc32q\t" "(%3), %0\n\t"
                    "crc32q\t" LONGx1 "(%3), %1\n\t"
                    "crc32q\t" LONGx2 "(%3), %2"
                    : "=r"(crc0), "=r"(crc1), "=r"(crc2)
                    : "r"(next), "0"(crc0), "1"(crc1), "2"(crc2));
            next += 8;
        } while (next < end);
        crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
        crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
        next += LONG*2;
        len -= LONG*3;
    }

    /* do the same thing, but now on SHORT*3 blocks for the remaining data less
       than a LONG*3 block */
    while (len >= SHORT*3) {
        crc1 = 0;
        crc2 = 0;
        end = next + SHORT;
        do {
            __asm__("crc32q\t" "(%3), %0\n\t"
                    "crc32q\t" SHORTx1 "(%3), %1\n\t"
                    "crc32q\t" SHORTx2 "(%3), %2"
                    : "=r"(crc0), "=r"(crc1), "=r"(crc2)
                    : "r"(next), "0"(crc0), "1"(crc1), "2"(crc2));
            next += 8;
        } while (next < end);
        crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
        crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
        next += SHORT*2;
        len -= SHORT*3;
    }

    /* compute the crc on the remaining eight-byte units less than a SHORT*3
       block */
    end = next + (len - (len & 7));
    while (next < end) {
        __asm__("crc32q\t" "(%1), %0"
                : "=r"(crc0)
                : "r"(next), "0"(crc0));
        next += 8;
    }
    len &= 7;

    /* compute the crc for up to seven trailing bytes */
    while (len) {
        __asm__("crc32b\t" "(%1), %0"
                : "=r"(crc0)
                : "r"(next), "0"(crc0));
        next++;
        len--;
    }

    /* return a post-processed crc */
    return (uint32_t)crc0 ^ 0xffffffff;
}

/* Check for SSE 4.2.  SSE 4.2 was first supported in Nehalem processors
   introduced in November, 2008.  This does not check for the existence of the
   cpuid instruction itself, which was introduced on the 486SL in 1992, so this
   will fail on earlier x86 processors.  cpuid works on all Pentium and later
   processors. */
#define SSE42(have) \
    do { \
        uint32_t eax, ecx; \
        eax = 1; \
        __asm__("cpuid" \
                : "=c"(ecx) \
                : "a"(eax) \
                : "%ebx", "%edx"); \
        (have) = (ecx >> 20) & 1; \
    } while (0)

/* Compute a CRC-32C.  If the crc32 instruction is available, use the hardware
   version.  Otherwise, use the software version. */
uint32_t crc32c(uint32_t crc, const void *buf, size_t len)
{
    int sse42;

    SSE42(sse42);
    return sse42 ? crc32c_hw(crc, buf, len) : crc32c_sw(crc, buf, len);
}

#ifdef TEST

#define SIZE (262144*3)
#define CHUNK SIZE

int main(int argc, char **argv)
{
    char *buf;
    ssize_t got;
    size_t off, n;
    uint32_t crc;

    (void)argv;
    crc = 0;
    buf = malloc(SIZE);
    if (buf == NULL) {
        fputs("out of memory", stderr);
        return 1;
    }
    while ((got = read(0, buf, SIZE)) > 0) {
        off = 0;
        do {
            n = (size_t)got - off;
            if (n > CHUNK)
                n = CHUNK;
            crc = argc > 1 ? crc32c_sw(crc, buf + off, n) :
                             crc32c(crc, buf + off, n);
            off += n;
        } while (off < (size_t)got);
    }
    free(buf);
    if (got == -1) {
        fputs("read error\n", stderr);
        return 1;
    }
    printf("%08x\n", crc);
    return 0;
}

#endif /* TEST */

答案 1 :(得分:13)

Mark Adler的回答是正确和完整的,但那些寻求快速简便地将CRC-32C集成到其应用程序中的人可能会发现调整代码有点困难,特别是如果他们使用的是Windows和.NET。

我使用硬件或软件方法创建了library that implements CRC-32C,具体取决于可用的硬件。它可以作为C ++和.NET的NuGet包使用。它当然是开源的。

除了上面包含Mark Adler的代码之外,我还找到了一种简单的方法来将软件回退的吞吐量提高50%。在我的计算机上,该库现在在软件中达到2 GB / s,在硬件中达到20 GB / s。对于那些好奇的人来说,这是优化的软件实现:

static uint32_t append_table(uint32_t crci, buffer input, size_t length)
{
    buffer next = input;
#ifdef _M_X64
    uint64_t crc;
#else
    uint32_t crc;
#endif

    crc = crci ^ 0xffffffff;
#ifdef _M_X64
    while (length && ((uintptr_t)next & 7) != 0)
    {
        crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
        --length;
    }
    while (length >= 16)
    {
        crc ^= *(uint64_t *)next;
        uint64_t high = *(uint64_t *)(next + 8);
        crc = table[15][crc & 0xff]
            ^ table[14][(crc >> 8) & 0xff]
            ^ table[13][(crc >> 16) & 0xff]
            ^ table[12][(crc >> 24) & 0xff]
            ^ table[11][(crc >> 32) & 0xff]
            ^ table[10][(crc >> 40) & 0xff]
            ^ table[9][(crc >> 48) & 0xff]
            ^ table[8][crc >> 56]
            ^ table[7][high & 0xff]
            ^ table[6][(high >> 8) & 0xff]
            ^ table[5][(high >> 16) & 0xff]
            ^ table[4][(high >> 24) & 0xff]
            ^ table[3][(high >> 32) & 0xff]
            ^ table[2][(high >> 40) & 0xff]
            ^ table[1][(high >> 48) & 0xff]
            ^ table[0][high >> 56];
        next += 16;
        length -= 16;
    }
#else
    while (length && ((uintptr_t)next & 3) != 0)
    {
        crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
        --length;
    }
    while (length >= 12)
    {
        crc ^= *(uint32_t *)next;
        uint32_t high = *(uint32_t *)(next + 4);
        uint32_t high2 = *(uint32_t *)(next + 8);
        crc = table[11][crc & 0xff]
            ^ table[10][(crc >> 8) & 0xff]
            ^ table[9][(crc >> 16) & 0xff]
            ^ table[8][crc >> 24]
            ^ table[7][high & 0xff]
            ^ table[6][(high >> 8) & 0xff]
            ^ table[5][(high >> 16) & 0xff]
            ^ table[4][high >> 24]
            ^ table[3][high2 & 0xff]
            ^ table[2][(high2 >> 8) & 0xff]
            ^ table[1][(high2 >> 16) & 0xff]
            ^ table[0][high2 >> 24];
        next += 12;
        length -= 12;
    }
#endif
    while (length)
    {
        crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
        --length;
    }
    return (uint32_t)crc ^ 0xffffffff;
}

正如你所看到的,它只是一次碾压更大的块。它需要更大的查找表,但它仍然是缓存友好的。该表以相同的方式生成,只有更多行。

我探索的另一件事是使用PCLMULQDQ指令在AMD处理器上获得硬件加速。我设法将Intel's CRC patch for zlib(也是available on GitHub)移植到除the magic constant 0x9db42487之外的CRC-32C多项式。如果有人能够破译那个,请告诉我。在supersaw7's excellent explanation on reddit之后,我还移植了难以捉摸的0x9db42487常量,我只需要花些时间来修改和测试它。

答案 2 :(得分:5)

我在这里比较各种算法:https://github.com/htot/crc32c

最快的算法取自Intels crc_iscsi_v_pcl.asm汇编代码(在linux内核中以修改后的形式提供),并使用此项目中包含的C包装器(crcintelasm.cc)。

为了能够在32位平台上运行此代码,首先它已尽可能移植到C(crc32intelc),需要少量的内联汇编。代码的某些部分取决于位数,crc32q在32位上不可用,也不是movq,这些都放在宏的(crc32intel.h)中,并带有32位平台的替代代码。