平均一列平均数据

时间:2013-07-05 12:44:11

标签: python csv average multiple-columns

我正在python中编写一个代码,用于完成一些事情的项目; 1)逐列读取xls文件中的数据 2)以三个为一组平均每列的列 3)然后平均得到的列

我已经完成了1和2,但似乎不能得到3,我认为我遇到的很多麻烦源于我使用浮点数然而我需要数字到6位小数。感谢任何帮助和耐心,我是python的新手

v = open("Pt_2_Test_Data.xls", 'wb') #created file to write output to
w = open("test2.xls")

count = 0

for row in w: #read in file
    for line in w:
        columns = line.split("\t") #split up into columns
        date = columns[0]
        time = columns[1]
        a = columns[2]
        b = columns[3]
        c = columns[4]
        d = columns[5]
        e = columns[6]
        f = columns[7]
        g = columns[8]
        h = columns[9]
        i = columns[10]
        j = columns[11]
        k = columns[12]
        l = columns[13]
        m = columns[14]
        n = columns[15]
        o = columns[16]
        p = columns[17]
        q = columns[18]
        r = columns[19]
        s = columns[20]
        t = columns[21]
        u = columns[22]
        LZA = columns[23]
        SZA = columns[24]
        LAM = columns[25]

        count += 1

        A = 0
        if count != 0:  # gets rid of column tiles
            filter1 = ((float(a) + float(b) + float(c))/3)
            filter1 = ("%.6f" %A)
            filter2 =  (float(d) + float(e) + float(f))/3
            filter2 = ("%.6f" %filter2)
            filter3 =  (float(g) + float(h) + float(i))/3
            filter3 = ("%.6f" %filter3)
            filter4 =  (float(j) + float(k) + float(l))/3
            filter4 = ("%.6f" %filter4)
            filter5 =  (float(m) + float(n) + float(o))/3
            filter5 = ("%.6f" %filter5)
            filter6 =  (float(p) + float(q) + float(r))/3
            filter6 = ("%.6f" %filter6)
            filter7 =  (float(s) + float(t) + float(u))/3
            filter7 = ("%.6f" %filter7)
            A = [filter1, filter2, filter3, filter4, filter5, filter6, filter7]
            A = ",".join(str(x) for x in A).join('[]')

            print A
            avg = [float(sum(col))/float(len(col)) for col in zip(*A)]
            print avg

我也试过像这样格式化数据:

            A = ('{0}    {1}    {2}     {3}    {4}    {5}    {6}    {7}    {8}'.format(date, time, float(filter1), float(filter2), float(filter3), float(filter4), float(filter5), float(filter6), float(filter7))+'\n') # average of triplets
            print A

认为我可以访问每个列的值并通过调用它们来预先形成必要的数学,就像使用字典时那样,但这是不成功的:它似乎是将数据识别为一行(所以试图访问[0]的任何列超出范围)或单个字符,而不是数字列表。这与使用float函数有关吗?

3 个答案:

答案 0 :(得分:1)

您可以使用decimal模块显示确切的数字。

from decimal import *
getcontext().prec = 6 # sets the precision to 6

请注意,使用浮点表示:

print(Decimal(1)/(Decimal(7)) # 0.142857
print(Decimal(100)/(Decimal(7)) # results in 14.2857

这意味着您可能需要将精度设置为更高的值才能获得6个小数位... 例如:

from decimal import *
getcontext().prec = 28
print("{0:.6f}".format(Decimal(100) / Decimal(7))) # 14.285714

为了对您的问题给出完整的答案,您能否解释一下您所寻求的平均值?所有(21)列的平均值?你可以发一些test_data.xls吗?

答案 1 :(得分:1)

我不确定我理解你想在3)中平均哪些列,但也许这样做你想要的:

with open("test2.xls") as w:
    w.next()  # skip over header row
    for row in w:
        (date, time, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t,
         u, LZA, SZA, LAM) = row.split("\t")  # split columns into fields

        A = [(float(a) + float(b) + float(c))/3,
             (float(d) + float(e) + float(f))/3,
             (float(g) + float(h) + float(i))/3,
             (float(j) + float(k) + float(l))/3,
             (float(m) + float(n) + float(o))/3,
             (float(p) + float(q) + float(r))/3,
             (float(s) + float(t) + float(u))/3]
        print ('['+ ', '.join(['{:.6f}']*len(A)) + ']').format(*A)
        avg = sum(A)/len(A)
        print avg

您可以使用以下代码更简洁地做同样的事情:

avg = lambda nums: sum(nums)/float(len(nums))

with open("test2.xls") as w:
    w.next()  # skip over header row
    for row in w:
        cols = row.split("\t")  # split into columns
        # then split that into fields
        date, time, values, LZA, SZA, LAM = (cols[0], cols[1],
                                             map(float, cols[2:23]), 
                                             cols[23], cols[24], cols[25])
        A = [avg(values[i:i+3]) for i in xrange(0, 21, 3)]
        print ('['+ ', '.join(['{:.6f}']*len(A)) + ']').format(*A)
        print avg(A)

答案 2 :(得分:0)

我会考虑使用numpy。我不确定如何阅读xls文件,但似乎有提供此功能的包。我会做这样的事情:

import numpy as np

with open("test2.txt") as f:
    for row in f:
        # row is a string, split on tabs, but ignore the values that
        # don't go into the average.  If you need to keep those you 
        # might want to look into genfromtxt and defining special datatypes
        data = (np.array(row.split('\t')[2:23])).astype(np.float)
        # split the data array into 7 separate arrays (3 columns each) and average on those
        avg = np.mean(np.array_split(data,7))
        print avg

我不确定上面的平均值是否正是你想要的。您可能需要保存较小的数组(smallArrays = np.array_split(data,7)),然后迭代这些数组,计算平均值。

即使这不是你想要的,我也建议你看看numpy。我发现它非常容易使用,并且非常有用,就像你正在尝试进行计算一样。