我想知道是否有任何包允许我们使用Lanczos过滤器。我找到了其他过滤器,如butterworth,但我正在寻找Lanczos低通滤波器。
Lanczos过滤器与butterworth过滤器有何不同?任何建议或提示都表示赞赏。
感谢。
答案 0 :(得分:4)
使用网络我找到了MATLAB implementation.
如果你跳过第一部分(参数检查),那么编写它的R等价物看起来很简单。
# Cf - Cut-off frequency (default: half Nyquist)
# M - Number of coefficients (default: 100)
lanczos_filter_coef <- function(Cf,M=100){
lowpass_cosine_filter_coef <- function(Cf,M)
coef <- Cf*c(1,sin(pi*seq(M)*Cf)/(pi*seq(M)*Cf))
hkcs <- lowpass_cosine_filter_coef(Cf,M)
sigma <- c(1,sin(pi*seq(M)/M)/(pi*seq(M)/M))
hkB <- hkcs*sigma
hkA <- -hkB
hkA[1] <- hkA[1]+1
coef <- cbind(hkB, hkA)
coef
}
例如测试它:
dT <- 1
Nf <- 1/(2*dT)
Cf <- Nf/2
Cf <- Cf/Nf
lanczos_filter_coef(Cf,5)
hkB hkA
[1,] 5.000000e-01 5.000000e-01
[2,] 2.977755e-01 -2.977755e-01
[3,] 1.475072e-17 -1.475072e-17
[4,] -5.353454e-02 5.353454e-02
[5,] -4.558222e-18 4.558222e-18
[6,] 2.481571e-18 -2.481571e-18
PS 我不太了解MATLAB(多年前用过它),所以我使用this link进行R / MATLAB类比。我希望有更多R / MATLAB / Scilab知识的人可以测试我的代码。
答案 1 :(得分:0)
我使用了此链接https://www.atmos.umd.edu/~ekalnay/syllabi/AOSC630/METO630ClassNotes13.pdf中提供的方法并编写了此函数: `
lanczos_weights<-function(window=101,sampl_rate=1,type="lowpass",low_freq=1/100,high_freq=1/10){
low_freq=sampl_rate*low_freq
high_freq=sampl_rate*high_freq
if (type=="lowpass"){
order = ((window - 1) %/% 2 ) + 1
nwts = 2 * order + 1
fc=low_freq
w = seq(0,0,length=nwts)
n = nwts %/% 2
w[n+1] = 2 * fc
k = seq(1, n-1)
sigma = sin(pi * k / n) * n / (pi * k)
firstfactor = sin(2 *pi * fc * k) / (pi * k)
w[n:2] = firstfactor * sigma
w[(n+2):(length(w)-1)] = firstfactor * sigma
w=w[-c(1,length(w))]}
else if (type=="highpass"){
order = ((window - 1) %/% 2 ) + 1
nwts = 2 * order + 1
fc=high_freq
w = seq(0,0,length=nwts)
n = nwts %/% 2
w[n+1] = 2 * fc
k = seq(1, n-1)
sigma = sin(pi * k / n) * n / (pi * k)
firstfactor = sin(2 *pi * fc * k) / (pi * k)
w[n:2] = firstfactor * sigma
w[(n+2):(length(w)-1)] = firstfactor * sigma
w=w[-c(1,length(w))]
w=-w
w[order]=1-2*fc }
else if (type=="bandpass"){
order = ((window - 1) %/% 2 ) + 1
nwts = 2 * order + 1
fc=low_freq
w = seq(0,0,length=nwts)
n = nwts %/% 2
w[n+1] = 2 * fc
k = seq(1, n-1)
sigma = sin(pi * k / n) * n / (pi * k)
firstfactor = sin(2 *pi * fc * k) / (pi * k)
w[n:2] = firstfactor * sigma
w[(n+2):(length(w)-1)] = firstfactor * sigma
w1=w[-c(1,length(w))]
order = ((window - 1) %/% 2 ) + 1
nwts = 2 * order + 1
fc=high_freq
w = seq(0,0,length=nwts)
n = nwts %/% 2
w[n+1] = 2 * fc
k = seq(1, n-1)
sigma = sin(pi * k / n) * n / (pi * k)
firstfactor = sin(2 *pi * fc * k) / (pi * k)
w[n:2] = firstfactor * sigma
w[(n+2):(length(w)-1)] = firstfactor * sigma
w2=w[-c(1,length(w))]
w=w2-w1}
else {print("Please specify a valid filter type: either 'lowpass', 'highpass' or 'bandpass'")}
return(w)}
`
#### the inputs are:
#### window: Filter length=number of weights. Corresponds to the total number of points to be lost. Should be odd: window=2N-1. The formula for N is taken from Poan et al. (2013)
#### sampl_rate: sampling rate=number of observation per time unit. ( eg: if time unit is one day, hourly data have sampl_rate=1/24)
#### type= one of "lowpass", "highpass" and "bandpass"
#### low_freq: the lowest frequency
#### high_freq: the highest frequency
我将我的权重与使用NCL filwgts_lanczos
获得的权重进行了比较,它们完全相同。