我有一个500k约会的数据集,持续时间在5到60分钟之间。
tdata <- structure(list(Start = structure(c(1325493000, 1325493600, 1325494200, 1325494800, 1325494800, 1325495400, 1325495400, 1325496000, 1325496000, 1325496600, 1325496600, 1325497500, 1325497500, 1325498100, 1325498100, 1325498400, 1325498700, 1325498700, 1325499000, 1325499300), class = c("POSIXct", "POSIXt"), tzone = "GMT"), End = structure(c(1325493600, 1325494200, 1325494500, 1325495400, 1325495400, 1325496000, 1325496000, 1325496600, 1325496600, 1325496900, 1325496900, 1325498100, 1325498100, 1325498400, 1325498700, 1325498700, 1325499000, 1325499300, 1325499600, 1325499600), class = c("POSIXct", "POSIXt"), tzone = "GMT"), Location = c("LocationA", "LocationA", "LocationA", "LocationA", "LocationA", "LocationA", "LocationA", "LocationA", "LocationA", "LocationB", "LocationB", "LocationB", "LocationB", "LocationB", "LocationB", "LocationB", "LocationB", "LocationB", "LocationB", "LocationB"), Room = c("RoomA", "RoomA", "RoomA", "RoomA", "RoomB", "RoomB", "RoomB", "RoomB", "RoomB", "RoomB", "RoomA", "RoomA", "RoomA", "RoomA", "RoomA", "RoomA", "RoomA", "RoomA", "RoomA", "RoomA")), .Names = c("Start", "End", "Location", "Room"), row.names = c(NA, 20L), class = "data.frame")
> head(tdata)
Start End Location Room
1 2012-01-02 08:30:00 2012-01-02 08:40:00 LocationA RoomA
2 2012-01-02 08:40:00 2012-01-02 08:50:00 LocationA RoomA
3 2012-01-02 08:50:00 2012-01-02 08:55:00 LocationA RoomA
4 2012-01-02 09:00:00 2012-01-02 09:10:00 LocationA RoomA
5 2012-01-02 09:00:00 2012-01-02 09:10:00 LocationA RoomB
6 2012-01-02 09:10:00 2012-01-02 09:20:00 LocationA RoomB
我想计算总共,每个位置和每个房间的并发约会次数(以及原始数据集中的其他几个因素)。
我尝试使用mysql
包执行左连接,该连接适用于小型数据集,但对整个数据集需要永久保留:
# SQL Join.
start.min <- min(tdata$Start, na.rm=T)
end.max <- max(tdata$End, na.rm=T)
tinterval <- seq.POSIXt(start.min, end.max, by = "mins")
tinterval <- as.data.frame(tinterval)
library(sqldf)
system.time(
output <- sqldf("SELECT *
FROM tinterval
LEFT JOIN tdata
ON tinterval.tinterval >= tdata.Start
AND tinterval.tinterval < tdata.End "))
head(output)
tinterval Start End Location Room
1 2012-01-02 09:30:00 2012-01-02 09:30:00 2012-01-02 09:40:00 LocationA RoomA
2 2012-01-02 09:31:00 2012-01-02 09:30:00 2012-01-02 09:40:00 LocationA RoomA
3 2012-01-02 09:32:00 2012-01-02 09:30:00 2012-01-02 09:40:00 LocationA RoomA
4 2012-01-02 09:33:00 2012-01-02 09:30:00 2012-01-02 09:40:00 LocationA RoomA
5 2012-01-02 09:34:00 2012-01-02 09:30:00 2012-01-02 09:40:00 LocationA RoomA
6 2012-01-02 09:35:00 2012-01-02 09:30:00 2012-01-02 09:40:00 LocationA RoomA
它创建一个数据框,其中列出了每分钟的所有“活动”约会。大型数据集涵盖整整一年(约525600分钟)。平均约会时间为18分钟,我希望sql join能够创建一个包含约500万行的数据集,我可以用它来创建不同因素(位置/房间等)的占用情况。
基于How to count number of concurrent users中建议的公开解决方案,我尝试使用data.table
和snowfall
,如下所示:
require(snowfall)
require(data.table)
sfInit(par=T, cpu=4)
sfLibrary(data.table)
tdata <- data.table(tdata)
tinterval <- seq.POSIXt(start.min, end.max, by = "mins")
setkey(tdata, Start, End)
sfExport("tdata") # "Transport" data to cores
system.time( output <- data.frame(tinterval,sfSapply(tinterval, function(i) length(tdata[Start <= i & i < End,Start]) ) ) )
> head(output)
tinterval sfSapply.tinterval..function.i..length.tdata.Start....i...i...
1 2012-01-02 08:30:00 1
2 2012-01-02 08:31:00 1
3 2012-01-02 08:32:00 1
4 2012-01-02 08:33:00 1
5 2012-01-02 08:34:00 1
6 2012-01-02 08:35:00 1
此解决方案速度快,计算1天需要约18秒(全年约2小时)。缺点是我无法为某些因素(位置,房间等)创建并发约会数的子集。我觉得必须有更好的方法来做这个......任何建议?
更新: 根据杰弗里的回答,最终解决方案看起来像这样。该示例显示了如何确定每个位置的占用率。
setkey(tdata, Location, Start, End)
vecTime <- seq(from=tdata$Start[1],to=tdata$End[nrow(tdata)],by=60)
res <- data.frame(time=vecTime)
for(i in 1:length(unique(tdata$Location)) ) {
addz <- array(0,length(vecTime))
remz <- array(0,length(vecTime))
tdata2 <- tdata[J(unique(tdata$Location)[i]),] # Subset a certain location.
startAgg <- aggregate(tdata2$Start,by=list(tdata2$Start),length)
endAgg <- aggregate(tdata2$End,by=list(tdata2$End),length)
addz[which(vecTime %in% startAgg$Group.1 )] <- startAgg$x
remz[which(vecTime %in% endAgg$Group.1)] <- -endAgg$x
res[,c( unique(tdata$Location)[i] )] <- cumsum(addz + remz)
}
> head(res)
time LocationA LocationB
1 2012-01-01 03:30:00 1 0
2 2012-01-01 03:31:00 1 0
3 2012-01-01 03:32:00 1 0
4 2012-01-01 03:33:00 1 0
5 2012-01-01 03:34:00 1 0
6 2012-01-01 03:35:00 1 0
答案 0 :(得分:3)
这样更好吗?
创建空白时间向量和空白计数向量。
vecTime <- seq(from=tdata$Start[1],to=tdata$End[nrow(tdata)],by=60)
addz <- array(0,length(vecTime))
remz <- array(0,length(vecTime))
startAgg <- aggregate(tdata$Start,by=list(tdata$Start),length)
endAgg <- aggregate(tdata$End,by=list(tdata$End),length)
addz[which(vecTime %in% startAgg$Group.1 )] <- startAgg$x
remz[which(vecTime %in% endAgg$Group.1)] <- -endAgg$x
res <- data.frame(time=vecTime,occupancy=cumsum(addz + remz))
答案 1 :(得分:0)
如果我理解你的目标,我不确定。不过,这可能有用:
#I changed the example to actually have concurrent appointments
DF <- read.table(text=" Start, End, Location, Room
1, 2012-01-02 08:30:00, 2012-01-02 08:40:00, LocationA, RoomA
2, 2012-01-02 08:40:00, 2012-01-02 08:50:00, LocationA, RoomA
3, 2012-01-02 08:50:00, 2012-01-02 09:55:00, LocationA, RoomA
4, 2012-01-02 09:00:00, 2012-01-02 09:10:00, LocationA, RoomA
5, 2012-01-02 09:00:00, 2012-01-02 09:10:00, LocationA, RoomB
6, 2012-01-02 09:10:00, 2012-01-02 09:20:00, LocationA, RoomB",header=TRUE,sep=",",stringsAsFactors=FALSE)
DF$Start <- as.POSIXct(DF$Start,format="%Y-%d-%m %H:%M:%S",tz="GMT")
DF$End <- as.POSIXct(DF$End,format="%Y-%d-%m %H:%M:%S",tz="GMT")
library(data.table)
DT <- data.table(DF)
DT[,c("Start_num","End_num"):=lapply(.SD,as.numeric),.SDcols=1:2]
fun <- function(s,e) {
require(intervals)
mat <- cbind(s,e)
inter <- Intervals(mat,closed=c(FALSE,FALSE),type="R")
io <- interval_overlap( inter, inter )
tablengths <- table(sapply(io,length))[-1]
sum(c(0,as.vector(tablengths/as.integer(names(tablengths)))))
}
#number of overlapping events per room and location
DT[,fun(Start_num,End_num),by=list(Location,Room)]
# Location Room V1
#1: LocationA RoomA 1
#2: LocationA RoomB 0
我没有对此进行测试,尤其是速度测试。
答案 2 :(得分:0)
这是一个策略 - 按开始时间排序,然后通过开始,结束,开始,结束等来取消列表数据,并查看是否需要重新排序该向量。如果没有,则没有冲突,如果有,你可以看到有多少约会(以及你喜欢哪些约会)相互冲突。
# Using Roland's example:
DF <- read.table(text=" Start, End, Location, Room
1,2012-01-02 08:30:00,2012-01-02 08:40:00,LocationA,RoomA
2,2012-01-02 08:40:00,2012-01-02 08:50:00,LocationA,RoomA
3,2012-01-02 08:50:00,2012-01-02 09:55:00,LocationA,RoomA
4,2012-01-02 09:00:00,2012-01-02 09:10:00,LocationA,RoomA
5,2012-01-02 09:00:00,2012-01-02 09:10:00,LocationA,RoomB
6,2012-01-02 09:10:00,2012-01-02 09:20:00,LocationA,RoomB",header=TRUE,sep=",",stringsAsFactors=FALSE)
dt = data.table(DF)
# the conflicting appointments
dt[order(Start),
.SD[unique((which(order(c(rbind(Start, End))) != 1:(2*.N)) - 1) %/% 2 + 1)],
by = list(Location, Room)]
# Location Room Start End
#1: LocationA RoomA 2012-01-02 08:50:00 2012-01-02 09:55:00
#2: LocationA RoomA 2012-01-02 09:00:00 2012-01-02 09:10:00
# and a speedier version of the above, that avoids constructing the full .SD:
dt[dt[order(Start),
.I[unique((which(order(c(rbind(Start, End))) != 1:(2*.N)) - 1) %/% 2 + 1)],
by = list(Location, Room)]$V1]
也许从无法匹配的顺序到正确的索引的公式可以简化,我没有花太多时间思考它,只是使用了完成工作的第一件事。