我试图通过r
枚举所有可能的大小为r
的矩阵,但有一些约束条件。
重要的一点是,我需要将每个组合存储在某个地方,或者如果用c ++编写,则在找到它们之后运行其他几个函数
r
和n
的值介于2到100之间。
我已经尝试了一种递归的方式来执行此操作,以及迭代,但仍然可以保持跟踪列和行总和以及可管理意义上的所有数据。
我附上了我最近的尝试(远未完成),但可能会让您知道发生了什么。
函数first_section():
正确地构建了第0行和第0列,但除此之外我没有任何成功。
我需要的不仅仅是推动这一点,逻辑是屁股的痛苦,并且吞噬了我的整体。我需要用python或C ++编写它。
import numpy as np
from itertools import combinations_with_replacement
global r
global n
r = 4
n = 8
global myarray
myarray = np.zeros((r,r))
global arraysums
arraysums = np.zeros((r,2))
def first_section():
bigData = []
myarray = np.zeros((r,r))
arraysums = np.zeros((r,2))
for i in reversed(range(1,n+1)):
myarray[0,0] = i
stuff = []
stuff = list(combinations_with_replacement(range(i),r-1))
for j in range(len(stuff)):
myarray[0,1:] = list(reversed(stuff[j]))
arraysums[0,0] = sum(myarray[0,:])
for k in range(len(stuff)):
myarray[1:,0] = list(reversed(stuff[k]))
arraysums[0,1] = sum(myarray[:,0])
if arraysums.max() > n:
break
bigData.append(np.hstack((myarray[0,:],myarray[1:,0])))
if printing: print 'myarray \n%s' %(myarray)
return bigData
def one_more_section(bigData,index):
newData = []
for item in bigData:
if printing: print 'item = %s' %(item)
upperbound = int(item[index-1]) # will need to have logic worked out
if printing: print 'upperbound = %s' % (upperbound)
for i in reversed(range(1,upperbound+1)):
myarray[index,index] = i
stuff = []
stuff = list(combinations_with_replacement(range(i),r-1))
for j in range(len(stuff)):
myarray[index,index+1:] = list(reversed(stuff[j]))
arraysums[index,0] = sum(myarray[index,:])
for k in range(len(stuff)):
myarray[index+1:,index] = list(reversed(stuff[k]))
arraysums[index,1] = sum(myarray[:,index])
if arraysums.max() > n:
break
if printing: print 'index = %s' %(index)
newData.append(np.hstack((myarray[index,index:],myarray[index+1:,index])))
if printing: print 'myarray \n%s' %(myarray)
return newData
bigData = first_section()
bigData = one_more_section(bigData,1)
可能的矩阵可能如下所示: r = 4,n> = 6
|3 2 0 0| = 5
|3 2 0 0| = 5
|0 0 2 1| = 3
|0 0 0 1| = 1
6 4 2 2
答案 0 :(得分:1)
这是numpy和python 2.7的解决方案。请注意,所有行和列都以非递增顺序排列,因为您只指定它们应该与替换组合,而不是它们的排序(并且生成组合对于排序列表最简单)。
可以通过将行和列总和作为参数保持而不是重新计算它们来稍微优化代码。
import numpy as np
r = 2 #matrix dimension
maxs = 5 #maximum sum of row/column
def generate(r, maxs):
# We create an extra row and column for the starting "dummy" values.
# Filling in the matrix becomes much simpler when we do not have to treat cells with
# one or two zero indices in special way. Thus, we start iteration from the
# (1, 1) index.
m = np.zeros((r + 1, r + 1), dtype = np.int32)
m[0] = m[:,0] = maxs + 1
def go(n, i, j):
# If we completely filled the matrix, yield a copy of the non-dummy parts.
if (i, j) == (r, r):
yield m[1:, 1:].copy()
return
# We compute the next indices in row major order (the choice is arbitrary).
(i2, j2) = (i + 1, 1) if j == r else (i, j + 1)
# Computing the maximum possible value for the current cell.
max_val = min(
maxs - m[i, 1:].sum(),
maxs - m[1:, j].sum(),
m[i, j-1],
m[i-1, j])
for n2 in xrange(max_val, -1, -1):
m[i, j] = n2
for matrix in go(n2, i2, j2):
yield matrix
return go(maxs, 1, 1) #note that this is a generator object
# testing
for matrix in generate(r, maxs):
print
print matrix
如果您希望在行和列中包含所有有效排列,则以下代码应该有效。
def generate(r, maxs):
m = np.zeros((r + 1, r + 1), dtype = np.int32)
rows = [0]*(r+1) # We avoid recomputing row/col sums on each cell.
cols = [0]*(r+1)
rows[0] = cols[0] = m[0, 0] = maxs
def go(i, j):
if (i, j) == (r, r):
yield m[1:, 1:].copy()
return
(i2, j2) = (i + 1, 1) if j == r else (i, j + 1)
max_val = min(rows[i-1] - rows[i], cols[j-1] - cols[j])
if i == j:
max_val = min(max_val, m[i-1, j-1])
if (i, j) != (1, 1):
max_val = min(max_val, m[1, 1])
for n in xrange(max_val, -1, -1):
m[i, j] = n
rows[i] += n
cols[j] += n
for matrix in go(i2, j2):
yield matrix
rows[i] -= n
cols[j] -= n
return go(1, 1)