使用OpenCV的MATLAB和C ++中的不同像素值

时间:2013-06-10 15:21:07

标签: c++ matlab opencv

我看到有类似的问题,但不要安静地回答我的问题,所以这是我的问题。

在使用OpenCV的C ++中,我运行下面将提供的代码,它返回的平均像素值为6.32。但是,当我打开图像并在MATLAB中使用均值函数时,它返回的平均像素强度约为6.92ish。正如您所看到的,我将OpenCV值转换为double以尝试缓解此问题,并发现openCV将图像作为一组整数加载,而MATLAB将图像加载为十进制值,这些值与整数大致相当但不完全相同。所以我的问题是,对编码不熟悉,这是正确的吗?我假设MATLAB返回更准确的值,如果是这种情况,我想知道是否有办法以相同的方式加载图像以避免差异。

谢谢你,下面的代码

    Mat img = imread("Cells2.tif");
cv::cvtColor(img, img, CV_BGR2GRAY);
cv::imshow("stuff",img);
Mat dst;
if(img.channels() == 3)
{
    img.convertTo(dst, CV_64FC1);
}
else if (img.channels() == 1) 
{
    img.convertTo(dst, CV_64FC1);
}
cv::imshow("output",dst/255);
int NumPixels = img.total();


double avg;
double c = 0; 
double std;
    for(int y = 0; y < dst.cols; y++)
    { 

        for(int x = 0; x < dst.rows; x++)
        {
            c+=dst.at<double>(x,y)*255;
        }
    }

avg = c/NumPixels;
cout << "asfa = " << c << endl;
double deviation;

double var;
double z = 0;
double q;
    //for(int a = 0; a<= img.cols; a++)
for(int y = 0; y< dst.cols; y++)
    {
        //for(int b = 0; b<= dst.rows; b++)
        for(int x = 0; x< dst.rows; x++)
        {
            q=dst.at<double>(x,y);

            deviation = q - avg;
            z = z + pow(deviation,2);
            //cout << "q = " << q << endl;
        }

    }

var = z/(NumPixels);
std = sqrt(var);
cv::Scalar avgPixel = cv::mean(dst);

cout << "Avg Value = " << avg << endl;
cout << "StdDev = " << std << endl;
cout << "AvgPixel =" << avgPixel;

cvWaitKey(0);
return 0;

}

4 个答案:

答案 0 :(得分:5)

根据您的评论,图像似乎以16位深度存储。 MATLAB按原样加载TIFF图像,而默认情况下OpenCV将图像加载为8位。这可能解释了您所看到的精度差异。

使用以下命令在OpenCV中打开图像:

cv::Mat img = cv::imread("file.tif", cv::IMREAD_ANYDEPTH|cv::IMREAD_ANYCOLOR);

在MATLAB中,它只是:

img = imread('file.tif');

接下来,您需要了解您正在使用的数据类型。在OpenCV中它的CV_16U,在MATLAB中它的uint16。因此,您需要相应地转换类型。

例如,在MATLAB中:

img2 = double(img) ./ double(intmax('uint16'));

会将其转换为double图像,其值为[0,1]

答案 1 :(得分:0)

  1. 如果满足某些条件,您正在转换图像,这可以更改某些颜色值,而MATLAB可以选择不转换图像但使用原始图像
  2. 颜色主要以十六进制格式表示,流行的实现格式为0xAARRGGBB或0xRRGGBBAA,因此32位整数可以做(无符号/有符号无关紧要,十六进制值仍然相同),创建一个64位变量,将所有32位变量加在一起,然后除以像素数量,这将获得非常准确的结果(对于高达16384 x 16384像素的图像(其中32位值表示一个像素的颜色) ),如果更大,那么64位整数就不够了。)

    long long total = 0;
    long long divisor = image.width * image.height;
    for(int x = 0; x < image.width; ++x)
    {
        for(int y = 0; x < image.height; ++x)
        {
            total += image.at(x,y).color;
        }
    }
    double avg = total / divisor;
    std::cout << "Average color value: " << avg << std::endl;
    

答案 2 :(得分:0)

加载图像时,必须在两种环境(MATLAB和OpenCV)中使用类似的方法,以避免在任一环境中默认情况下可能进行的转换。

答案 3 :(得分:0)

不确定您在Matlab与OpenCV中的平均值有什么困难。如果我正确理解您的问题,您的目标是在OpenCV中实现Matlab的mean(image(:))。例如,在Matlab中,您可以执行以下操作:

>> image = imread('sheep.jpg')
>> avg = mean(image(:))

ans =

   119.8210

以下是在OpenCV中执行相同操作的方法:

Mat image = imread("sheep.jpg");
Scalar avg_pixel;
avg_pixel = mean(image);
float avg = 0;
cout << "mean pixel (RGB): " << avg_pixel << endl;

for(int i; i<image.channels(); ++i) {
    avg = avg + avg_pixel[i]; 
}
avg = avg/image.channels();
cout << "mean, that's equivalent to mean(image(:)) in Matlab: " << avg << endl;

OpenCV控制台输出:

mean pixel (RGB): [77.4377, 154.43, 127.596, 0]
mean, that's equivalent to mean(image(:)) in Matlab: 119.821

所以Matlab和OpenCV的结果是一样的。

跟进 在您的代码中发现了一些问题。

  • OpenCV以不同于Matlab的方式存储数据。请查看this answer,了解如何在OpenCV中访问像素。例如:

    // NOT a correct way to access a pixel in CV_F32C3 type image
    double pixel = image.at<double>(x,y); 
    
    //The correct way (where the pixel value is stored in a vector)
    // Note that Vec3d is defined as: typedef Vec<double, 3> Vec3d;
    Vec3d pixel = image.at<Vec3d>(x, y);
    
  • 我发现的另一个错误

    if(img.channels() == 3)
    {
        img.convertTo(dst, CV_64FC1); //should be CV_64FC3, instead of CV_64FC1
    }
    

访问Mat元素可能会造成混淆。我建议您开一本关于OpenCV的书籍,例如this one,并阅读OpenCV tutorials and documentation。希望这会有所帮助。