我在3D阵列的每个2D切片上都有一个功能。如何对函数进行向量化以避免循环以提高性能?例如:
def interp_2d(x0,y0,z0,x1,y1):
# x0, y0 and z0 are 2D array
# x1 and y1 are 2D array
# peform 2D interpolation
return z1
# now I want to call the interp_2d for each 2D slice of z0_3d as following:
for k in range(z0_3d.shape[2]):
z1_3d[:,:,k]=interp_2d(x0, y0, z0_3d[:,:,k], x1, y1)
答案 0 :(得分:1)
如果不重新实现interp_2d
,则无法进行矢量化。但是,假设interp_2d
是某种类型的插值,那么操作可能是线性的。那是lambda z0: interp_2d(x0, y0, z0, x1, y1)
可能等同于np.dot(M, z0)
,其中M
是一些(可能是稀疏的)矩阵,依赖于x0
,y0
,x1
和y1
。现在,通过调用interp_2d
函数,您可以在每次调用时隐式重新计算此矩阵,即使每次调用都相同。找出该矩阵的次数并将其重新应用到新的z0
次数会更有效。
这是一个非常简单的1D插值示例:
x0 = [0., 1.]
x1 = 0.3
z0_2d = "some very long array with shape=(2, n)"
def interp_1d(x0, z0, x1):
"""x0 and z0 are length 2, 1D arrays, x1 is a float between x0[0] and x0[1]."""
delta_x = x0[1] - x0[0]
w0 = (x1 - x0[0]) / delta_x
w1 = (x0[1] - x1) / delta_x
return w0 * z0[0] + w1 * z0[1]
# The slow way.
for i in range(n):
z1_2d[i] = interp_1d(x0, z0_2d[:,i], x1)
# Notice that the intermediate products w1 and w2 are the same on each
# iteration but we recalculate them anyway.
# The fast way.
def interp_1d_weights(x0, x1):
delta_x = x0[1] - x0[0]
w0 = (x1 - x0[0]) / delta_x
w1 = (x0[1] - x1) / delta_x
return w0, w1
w0, w1 = interp_1d_weights(x0, x1)
z1_2d = w0 * z0_2d[0,:] + w1 * z0_2d[1:0]
如果n
非常大,预计速度会超过100倍。