是否有printf
宽度说明符可以应用于浮点说明符,该说明符会自动将输出格式化为必要数量的有效数字,以便在重新扫描字符串时,获取原始浮点值?
例如,假设我打印float
精度为2
小数位:
float foobar = 0.9375;
printf("%.2f", foobar); // prints out 0.94
当我扫描输出0.94
时,我没有符合标准的保证,我将获得原始0.9375
浮点值(在本例中,我可能不会)。
我想告诉printf
自动将浮点值打印到必要数量的有效数字,以确保可以将其扫描回传递给的原始值printf
。
我可以使用float.h
到derive the maximum width中的一些宏传递给printf
,但是已经有一个说明符可以自动打印到必要数量的有效数字 - 或至少达到最大宽度?
答案 0 :(得分:71)
我推荐@Jens Gustedt十六进制解决方案:使用%a。
OP希望“以最高精度打印(或至少以最重要的十进制)”。
一个简单的例子是打印七分之一,如:
#include <float.h>
int Digs = DECIMAL_DIG;
double OneSeventh = 1.0/7.0;
printf("%.*e\n", Digs, OneSeventh);
// 1.428571428571428492127e-01
但是让我们深入挖掘......
在数学上,答案是“0.142857 142857 142857 ...”,但我们使用的是有限精度浮点数。
我们假设IEEE 754 double-precision binary。
因此,OneSeventh = 1.0/7.0
会产生以下值。还显示了前后可表示的double
浮点数。
OneSeventh before = 0.1428571428571428 214571170656199683435261249542236328125
OneSeventh = 0.1428571428571428 49212692681248881854116916656494140625
OneSeventh after = 0.1428571428571428 769682682968777953647077083587646484375
打印double
的完全十进制表示形式的用途有限。
C在<float.h>
中有两个宏系列来帮助我们
第一组是以十进制形式打印的重要位数,因此在扫描字符串时,
我们得到原始的浮点数。显示了C规范的最小值和示例 C11编译器。
FLT_DECIMAL_DIG 6, 9 (float) (C11)
DBL_DECIMAL_DIG 10, 17 (double) (C11)
LDBL_DECIMAL_DIG 10, 21 (long double) (C11)
DECIMAL_DIG 10, 21 (widest supported floating type) (C99)
第二组是重要位数,可以将字符串扫描到浮点然后打印FP,仍保留相同的字符串显示。显示了C规范的最小值和示例 C11编译器。我相信在C99之前可用。
FLT_DIG 6, 6 (float)
DBL_DIG 10, 15 (double)
LDBL_DIG 10, 18 (long double)
第一组宏似乎符合OP的重要数字的目标。但宏并不总是可用。
#ifdef DBL_DECIMAL_DIG
#define OP_DBL_Digs (DBL_DECIMAL_DIG)
#else
#ifdef DECIMAL_DIG
#define OP_DBL_Digs (DECIMAL_DIG)
#else
#define OP_DBL_Digs (DBL_DIG + 3)
#endif
#endif
“+ 3”是我之前回答的症结所在。 它的核心是,如果知道往返转换字符串-FP-string(设置#2宏可用C89),如何确定FP-string-FP的数字(在C89之后设置#1宏)?通常,结果是添加3。
现在已知有多少重要的数字,并且已通过<float.h>
来驱动。
要打印N 重要十进制数字,可以使用各种格式。
使用"%e"
时,精度字段是前导数字和小数点后的位数。
所以- 1
是有序的。注意:这个-1 is not in the initial
int Digs = DECIMAL_DIG;`
printf("%.*e\n", OP_DBL_Digs - 1, OneSeventh);
// 1.4285714285714285e-01
使用"%f"
时,精度字段是小数点后的位数。
对于OneSeventh/1000000.0
这样的数字,我们需要OP_DBL_Digs + 6
才能看到所有重要的数字。
printf("%.*f\n", OP_DBL_Digs , OneSeventh);
// 0.14285714285714285
printf("%.*f\n", OP_DBL_Digs + 6, OneSeventh/1000000.0);
// 0.00000014285714285714285
注意:许多用于"%f"
。在小数点后显示6位数; 6是显示默认值,而不是数字的精度。
答案 1 :(得分:52)
无损地打印浮点数的简短答案(这样可以读取它们 返回到完全相同的数字,NaN和Infinity除外):
printf("%.9g", number)
。printf("%.17g", number)
。请勿使用%f
,因为它仅指定小数点后的有效位数,并将截断小数字。作为参考,可以在float.h
中找到幻数9和17,它定义FLT_DECIMAL_DIG
和DBL_DECIMAL_DIG
。
答案 2 :(得分:22)
如果您只对位(resp hex模式)感兴趣,可以使用%a
格式。这可以保证:
在 如果存在基数2中的精确表示,则默认精度足以精确表示值,否则足够大以区分double类型的值。
我必须补充说,这只有在C99之后才可用。
答案 3 :(得分:11)
不,没有这样的 printf宽度说明符来打印具有最大精度的浮点数。让我解释一下原因。
float
和double
的最高精确度为变量,并取决于float
或{的实际值 {1}}。
召回double
和float
以sign.exponent.mantissa格式存储。这意味着对于小数而言,分数组件使用的位数比大数字更多。
例如,double
可以轻松区分0.0和0.1。
float
但float r = 0;
printf( "%.6f\n", r ) ; // 0.000000
r+=0.1 ;
printf( "%.6f\n", r ) ; // 0.100000
不知道float
和1e27
之间的区别。
1e27 + 0.1
这是因为所有精度(受尾数位数限制)用于数字的大部分,小数点左边。
r = 1e27;
printf( "%.6f\n", r ) ; // 999999988484154753734934528.000000
r+=0.1 ;
printf( "%.6f\n", r ) ; // still 999999988484154753734934528.000000
修饰符只是说明要从格式进行的浮点数打印多少个十进制值。可用准确度取决于数字的大小取决于您作为程序员要处理的事实。 %.f
无法为您处理此问题。
答案 4 :(得分:9)
只需使用<float.h>
中的宏和可变宽度转换说明符(".*"
):
float f = 3.14159265358979323846;
printf("%.*f\n", FLT_DIG, f);
答案 5 :(得分:0)
在我对答案的一个评论中,我感到遗憾的是,我一直想要某种方式以十进制形式打印浮点值中的所有有效数字,这与问题要求的方式非常相似。好吧,我终于坐下来写了。它不是很完美,这是打印附加信息的演示代码,但它主要适用于我的测试。如果您(即任何人)想要一份驱动它进行测试的整个包装程序的副本,请告诉我。
static unsigned int
ilog10(uintmax_t v);
/*
* Note: As presented this demo code prints a whole line including information
* about how the form was arrived with, as well as in certain cases a couple of
* interesting details about the number, such as the number of decimal places,
* and possibley the magnitude of the value and the number of significant
* digits.
*/
void
print_decimal(double d)
{
size_t sigdig;
int dplaces;
double flintmax;
/*
* If we really want to see a plain decimal presentation with all of
* the possible significant digits of precision for a floating point
* number, then we must calculate the correct number of decimal places
* to show with "%.*f" as follows.
*
* This is in lieu of always using either full on scientific notation
* with "%e" (where the presentation is always in decimal format so we
* can directly print the maximum number of significant digits
* supported by the representation, taking into acount the one digit
* represented by by the leading digit)
*
* printf("%1.*e", DBL_DECIMAL_DIG - 1, d)
*
* or using the built-in human-friendly formatting with "%g" (where a
* '*' parameter is used as the number of significant digits to print
* and so we can just print exactly the maximum number supported by the
* representation)
*
* printf("%.*g", DBL_DECIMAL_DIG, d)
*
*
* N.B.: If we want the printed result to again survive a round-trip
* conversion to binary and back, and to be rounded to a human-friendly
* number, then we can only print DBL_DIG significant digits (instead
* of the larger DBL_DECIMAL_DIG digits).
*
* Note: "flintmax" here refers to the largest consecutive integer
* that can be safely stored in a floating point variable without
* losing precision.
*/
#ifdef PRINT_ROUND_TRIP_SAFE
# ifdef DBL_DIG
sigdig = DBL_DIG;
# else
sigdig = ilog10(uipow(FLT_RADIX, DBL_MANT_DIG - 1));
# endif
#else
# ifdef DBL_DECIMAL_DIG
sigdig = DBL_DECIMAL_DIG;
# else
sigdig = (size_t) lrint(ceil(DBL_MANT_DIG * log10((double) FLT_RADIX))) + 1;
# endif
#endif
flintmax = pow((double) FLT_RADIX, (double) DBL_MANT_DIG); /* xxx use uipow() */
if (d == 0.0) {
printf("z = %.*s\n", (int) sigdig + 1, "0.000000000000000000000"); /* 21 */
} else if (fabs(d) >= 0.1 &&
fabs(d) <= flintmax) {
dplaces = (int) (sigdig - (size_t) lrint(ceil(log10(ceil(fabs(d))))));
if (dplaces < 0) {
/* XXX this is likely never less than -1 */
/*
* XXX the last digit is not significant!!! XXX
*
* This should also be printed with sprintf() and edited...
*/
printf("R = %.0f [%d too many significant digits!!!, zero decimal places]\n", d, abs(dplaces));
} else if (dplaces == 0) {
/*
* The decimal fraction here is not significant and
* should always be zero (XXX I've never seen this)
*/
printf("R = %.0f [zero decimal places]\n", d);
} else {
if (fabs(d) == 1.0) {
/*
* This is a special case where the calculation
* is off by one because log10(1.0) is 0, but
* we still have the leading '1' whole digit to
* count as a significant digit.
*/
#if 0
printf("ceil(1.0) = %f, log10(ceil(1.0)) = %f, ceil(log10(ceil(1.0))) = %f\n",
ceil(fabs(d)), log10(ceil(fabs(d))), ceil(log10(ceil(fabs(d)))));
#endif
dplaces--;
}
/* this is really the "useful" range of %f */
printf("r = %.*f [%d decimal places]\n", dplaces, d, dplaces);
}
} else {
if (fabs(d) < 1.0) {
int lz;
lz = abs((int) lrint(floor(log10(fabs(d)))));
/* i.e. add # of leading zeros to the precision */
dplaces = (int) sigdig - 1 + lz;
printf("f = %.*f [%d decimal places]\n", dplaces, d, dplaces);
} else { /* d > flintmax */
size_t n;
size_t i;
char *df;
/*
* hmmmm... the easy way to suppress the "invalid",
* i.e. non-significant digits is to do a string
* replacement of all dgits after the first
* DBL_DECIMAL_DIG to convert them to zeros, and to
* round the least significant digit.
*/
df = malloc((size_t) 1);
n = (size_t) snprintf(df, (size_t) 1, "%.1f", d);
n++; /* for the NUL */
df = realloc(df, n);
(void) snprintf(df, n, "%.1f", d);
if ((n - 2) > sigdig) {
/*
* XXX rounding the integer part here is "hard"
* -- we would have to convert the digits up to
* this point back into a binary format and
* round that value appropriately in order to
* do it correctly.
*/
if (df[sigdig] >= '5' && df[sigdig] <= '9') {
if (df[sigdig - 1] == '9') {
/*
* xxx fixing this is left as
* an exercise to the reader!
*/
printf("F = *** failed to round integer part at the least significant digit!!! ***\n");
free(df);
return;
} else {
df[sigdig - 1]++;
}
}
for (i = sigdig; df[i] != '.'; i++) {
df[i] = '0';
}
} else {
i = n - 1; /* less the NUL */
if (isnan(d) || isinf(d)) {
sigdig = 0; /* "nan" or "inf" */
}
}
printf("F = %.*s. [0 decimal places, %lu digits, %lu digits significant]\n",
(int) i, df, (unsigned long int) i, (unsigned long int) sigdig);
free(df);
}
}
return;
}
static unsigned int
msb(uintmax_t v)
{
unsigned int mb = 0;
while (v >>= 1) { /* unroll for more speed... (see ilog2()) */
mb++;
}
return mb;
}
static unsigned int
ilog10(uintmax_t v)
{
unsigned int r;
static unsigned long long int const PowersOf10[] =
{ 1LLU, 10LLU, 100LLU, 1000LLU, 10000LLU, 100000LLU, 1000000LLU,
10000000LLU, 100000000LLU, 1000000000LLU, 10000000000LLU,
100000000000LLU, 1000000000000LLU, 10000000000000LLU,
100000000000000LLU, 1000000000000000LLU, 10000000000000000LLU,
100000000000000000LLU, 1000000000000000000LLU,
10000000000000000000LLU };
if (!v) {
return ~0U;
}
/*
* By the relationship "log10(v) = log2(v) / log2(10)", we need to
* multiply "log2(v)" by "1 / log2(10)", which is approximately
* 1233/4096, or (1233, followed by a right shift of 12).
*
* Finally, since the result is only an approximation that may be off
* by one, the exact value is found by subtracting "v < PowersOf10[r]"
* from the result.
*/
r = ((msb(v) * 1233) >> 12) + 1;
return r - (v < PowersOf10[r]);
}
答案 6 :(得分:0)
我进行了一个小实验,以验证使用DBL_DECIMAL_DIG
打印确实确实保留了数字的二进制表示形式。事实证明,对于我尝试过的编译器和C库,DBL_DECIMAL_DIG
确实是所需的位数,即使打印少一位也造成了严重的问题。
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
union {
short s[4];
double d;
} u;
void
test(int digits)
{
int i, j;
char buff[40];
double d2;
int n, num_equal, bin_equal;
srand(17);
n = num_equal = bin_equal = 0;
for (i = 0; i < 1000000; i++) {
for (j = 0; j < 4; j++)
u.s[j] = rand();
if (isnan(u.d))
continue;
n++;
sprintf(buff, "%.*g", digits, u.d);
sscanf(buff, "%lg", &d2);
if (u.d == d2)
num_equal++;
if (memcmp(&u.d, &d2, sizeof(double)) == 0)
bin_equal++;
}
printf("Tested %d values with %d digits: %d found numericaly equal, %d found binary equal\n", n, digits, num_equal, bin_equal);
}
int
main()
{
test(DBL_DECIMAL_DIG);
test(DBL_DECIMAL_DIG - 1);
return 0;
}
我使用Microsoft的C编译器19.00.24215.1和gcc版本6.3.0 20170516(Debian 6.3.0-18 + deb9u1)运行此文件。使用少一位的十进制数字将完全相等的数字减半。 (我还验证了所使用的rand()
确实产生了大约一百万个不同的数字。)这是详细的结果。
Tested 999523 values with 17 digits: 999523 found numericaly equal, 999523 found binary equal Tested 999523 values with 16 digits: 549780 found numericaly equal, 549780 found binary equal
Tested 999492 values with 17 digits: 999492 found numericaly equal, 999492 found binary equal Tested 999492 values with 16 digits: 546615 found numericaly equal, 546615 found binary equal
答案 7 :(得分:0)