1 2 3
4 5 6
7 8 9
0
保险柜的门被密码锁定。乔希亲眼目睹了一名员工打开保险箱。这是乔希发现的信息。
1.密码是一个恰好包含N位的序列..
2.使用下图所示的键盘输入密码。
3.密码中的每对相邻数字在键盘上相邻。键盘上的两个数字相邻,如果它们是不同的并且具有共同的边缘。
乔希有着打开保险箱的邪恶意图,但在他能够实现他的计划之前,他想知道有多少不同的密码存在。给定N的值,返回满足上面给出的所有约束的可能密码的数量。
解决方案:
#include <cstdio>
class UnsealTheSafe{
public:
long long countPasswords(int N){
long long d[50][20];
int i;
for(i=0; i<=9; i++){
d[1][i]=1;
}
for(i=2; i<=N; i++){
d[i][0]=d[i-1][7];
d[i][1]=d[i-1][2]+d[i-1][4];
d[i][2]=d[i-1][1]+d[i-1][3]+d[i-1][5];
d[i][3]=d[i-1][2]+d[i-1][6];
d[i][4]=d[i-1][1]+d[i-1][5]+d[i-1][7];
d[i][5]=d[i-1][2]+d[i-1][4]+d[i-1][6]+d[i-1][8];
d[i][6]=d[i-1][3]+d[i-1][5]+d[i-1][9];
d[i][7]=d[i-1][4]+d[i-1][8]+d[i-1][0];
d[i][8]=d[i-1][5]+d[i-1][7]+d[i-1][9];
d[i][9]=d[i-1][6]+d[i-1][8];
d[i][0]=d[i-1][7];
}
long long ans=0;
for(i=0; i<=9; i++){
ans+=d[N][i];
}
return ans;
}
};
我无法理解此解决方案如何提供正确的结果。谁能告诉它背后的逻辑呢?
答案 0 :(得分:0)
#include <cstdio>
class UnsealTheSafe{
public:
long long countPasswords(int N){
long long d[50][20]; // Create array to keep track of counts
// d[number of steps][final digit entered]
// (note: the choice of 50 and 20 appear arbitrary)
int i;
for(i=0; i<=9; i++){
d[1][i]=1; // This basically says that for each possible digit (0-9)
// there is 1 way to enter it in 1 step
}
// Now for number of steps 2 and greater, fill in array
//
for(i=2; i<=N; i++){
d[i][0]=d[i-1][7]; // Because we can only get to 0 from 7
// the number of ways to get to 0 after i steps is
// equal to the number of ways to get to 7 after
// i-1 steps
d[i][1]=d[i-1][2]+d[i-1][4]; // We can get to 1 after i steps by
// getting to 2 or 4 after i-1 steps
// Thus the number of ways to get to 1
// after i steps is equal to the number of
// ways to get to 2 in i-1 steps plus
// the number of ways to get to 4 in i-1 steps
d[i][2]=d[i-1][1]+d[i-1][3]+d[i-1][5]; // etc.
d[i][3]=d[i-1][2]+d[i-1][6];
d[i][4]=d[i-1][1]+d[i-1][5]+d[i-1][7];
d[i][5]=d[i-1][2]+d[i-1][4]+d[i-1][6]+d[i-1][8];
d[i][6]=d[i-1][3]+d[i-1][5]+d[i-1][9];
d[i][7]=d[i-1][4]+d[i-1][8]+d[i-1][0];
d[i][8]=d[i-1][5]+d[i-1][7]+d[i-1][9];
d[i][9]=d[i-1][6]+d[i-1][8];
d[i][0]=d[i-1][7];
}
long long ans=0;
for(i=0; i<=9; i++){
ans+=d[N][i]; //the answer is the sume of the number of ways to
// get to each digit in N steps, as we computed above
}
return ans;
}
};