对数据帧中的元素对进行操作

时间:2013-05-24 09:11:10

标签: r for-loop apply reshape microbenchmark

我有两个数据框xweights,其中的列已配对。以下是示例数据框:

x = read.table(text = "
  yr1  yr2  yr3  yr4
   10   15    6    8
   10   20   30   NA
   NA    5    2    3
  100  100   NA   NA", 
sep = "", header = TRUE)

weights = read.table(text = "
  yr1  yr2  yr3  yr4
    2    4    1    3
    2    2    4    2
    3    2    2    3
    4    2    2    4", 
sep = "", header = TRUE)

yr1yr2是一对,列yr3yr4是另一对。根据我的实际数据,列数最多为yr100,并且有50对列。

如果yr1中缺少yr2x,我想填写缺失的观察结果,例如:

(5 / 2) * 3

同样适用于yr3yr4

(30 / 4) * 2

其中5(或30)是x中列中的元素,对于给定的元素对,它不会丢失。第一个示例的值2和3(以及第二个示例中的值4和2)是weights数据帧中给定元素对的x数据帧中的对应元素。如果x中缺少一对中的两个元素,我想让它们丢失。

以下是使用嵌套R执行上述操作的for loops代码。但是,我的实际数据集中有2000或3000行,嵌套的for loops现在已经运行了> 10个小时。

for(i in 1: (ncol(x)/2)) {
  for(j in 1: nrow(x)) {

    if( is.na(x[j,(1 + (i-1)*2)]) & !is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 0)] =  (x[j,(1 + ((i-1)*2 + 1))] / weights[j,(1 + ((i-1)*2 + 1))]) * weights[j,(1 + (i-1)*2 + 0)]
    if(!is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 1)] =  (x[j,(1 + ((i-1)*2 + 0))] / weights[j,(1 + ((i-1)*2 + 0))]) * weights[j,(1 + (i-1)*2 + 1)] 
    if( is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 0)] =  NA 
    if( is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 1)] =  NA

 }
}

我已经意识到第三和第四个if语句可能不是必需的。如果我只删除那两个if语句,那么运行此代码的时间可能会大大减少。

但是,我还想出了以下使用reshape而不是嵌套for loops的替代解决方案:

n.years <- 4

x2  <- reshape(x      , direction="long", varying = list(seq(1,(n.years-1),2), seq(2,n.years,2)), v.names = c("yr1", "yr2"), times = c("t1", "t2"))
wt2 <- reshape(weights, direction="long", varying = list(seq(1,(n.years-1),2), seq(2,n.years,2)), v.names = c("yr1", "yr2"), times = c("t1", "t2"))

x2$yr1  <- ifelse(is.na(x2$yr1), (x2$yr2 / wt2$yr2) * wt2$yr1, x2$yr1)
x2$yr2  <- ifelse(is.na(x2$yr2), (x2$yr1 / wt2$yr1) * wt2$yr2, x2$yr2)

x3  <- reshape(x2, direction="wide", varying = list(seq(1,3,2), seq(2,4,2)), v.names = c("yr1", "yr2"), times = c("t1", "t2"))
x3

在我关闭当前的R会话并尝试上述方法之一之前,请建议可能更有效的替代方案。我稍微使用了microbenchmark,但还没有尝试过这样做,部分原因是为每个可能的解决方案编写一个函数对我来说有点吓人。我也尝试使用apply系列函数提出解决方案,但无法提出解决方案。

我的reshape解决方案来自这个问题:

Reshaping a data frame with more than one measure variable

除了计算时间,我还担心可能的内存耗尽。

我努力坚持使用基础R,但会考虑使用其他选项来获得所需的输出。感谢您的任何建议。

2 个答案:

答案 0 :(得分:1)

这对你有用吗?

请注意,我没有使用您的替换函数,因为我发现它有点令人困惑,因此您必须修复如何使用公式替换yr1和yr2变量。此外,如果您需要将结果附加到原始数据框,则可能需要reshape结果。

newx <- 
reshape(x, direction="long",varying=list(1:50*2-1,1:50*2), v.names=c("v1","v2"))

newwt <- 
reshape(weights, direction="long",varying=list(1:50*2-1,1:50*2), v.names=c("w1","w2"))

condwtmean <- function(x,y,wtx,wty){
    if(xor(is.na(x),is.na(y))){
        if(is.na(x))
            x <- y # replacement function
        if(is.na(y))
            y <- x # replacement function
        return(weighted.mean(c(x,y),c(wtx,wty)))
    }
    else if(!is.na(x) & !is.na(y))
        return(weighted.mean(c(x,y),c(wtx,wty)))
    else
        return(NA)  
}
newx$wtmean <- mapply(condwtmean, newx$v1, newx$v2, newwt$w1, newwt$w2)

答案 1 :(得分:0)

托马斯的回答比我尝试过的三种方法都要好得多。在这里,我将这四种方法与microbenchmark进行比较。我还没有尝试过托马斯对实际数据的回答。我原来的嵌套for循环方法在22小时后仍在运行。

Unit: milliseconds
             expr       min        lq   median       uq      max neval
 fn.1(x, weights)  98.69133  99.47574 100.5313 101.7315 108.8757    20
 fn.2(x, weights) 755.51583 758.12175 762.3775 776.0558 801.9615    20
 fn.3(x, weights) 564.21423 567.98822 568.5322 571.0975 575.1809    20
 fn.4(x, weights) 367.05862 370.52657 371.7439 373.7367 395.0423    20

#########################################################################################

# create data

set.seed(1234)

n.rows <- 40
n.cols <- 40
n.sample <- n.rows * n.cols

x <- sample(20, n.sample, replace=TRUE)
x.NA <- sample(n.rows*n.cols, 10*(n.sample / n.rows), replace=FALSE)
x[x.NA] <- NA
x <- as.data.frame(matrix(x, nrow = n.rows))

weights <- sample(4, n.sample, replace=TRUE)
weights <- as.data.frame(matrix(weights, nrow = n.rows))
weights

#########################################################################################

# Thomas's function

fn.1 <- function(x, weights){

newx <- reshape(x, direction="long", varying = list(seq(1,(n.cols-1),2), seq(2,n.cols,2)), v.names=c("v1", "v2"))

newwt <- reshape(weights, direction="long", varying = list(seq(1,(n.cols-1),2), seq(2,n.cols,2)), v.names=c("w1", "w2"))

condwtmean <- function(x,y,wtx,wty){
    if(xor(is.na(x),is.na(y))){
        if(is.na(x))
            x <- (y / wty) * wtx # replacement function
        if(is.na(y))
            y <- (x / wtx) * wty # replacement function
        return(weighted.mean(c(x,y),c(wtx,wty)))
    }
    else if(!is.na(x) & !is.na(y))
        return(weighted.mean(c(x,y),c(wtx,wty)))
    else
        return(NA)  
}

newx$wtmean <- mapply(condwtmean, newx$v1, newx$v2, newwt$w1, newwt$w2)

newx2 <- reshape(newx[,c(1,4:5)], v.names = "wtmean", timevar = "time", direction = "wide")

newx2 <- newx2[,2:(n.cols/2+1)]
names(newx2) <- paste('X', 1:(n.cols/2), sep = "")

return(newx2)

}

fn.1.output <- fn.1(x, weights)

#########################################################################################

# nested for-loops with 4 if statements

fn.2 <- function(x, weights){

for(i in 1: (ncol(x)/2)) {
  for(j in 1: nrow(x)) {

    if( is.na(x[j,(1 + (i-1)*2)]) & !is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 0)] =  (x[j,(1 + ((i-1)*2 + 1))] / weights[j,(1 + ((i-1)*2 + 1))]) * weights[j,(1 + (i-1)*2 + 0)]
    if(!is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 1)] =  (x[j,(1 + ((i-1)*2 + 0))] / weights[j,(1 + ((i-1)*2 + 0))]) * weights[j,(1 + (i-1)*2 + 1)] 
    if( is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 0)] =  NA 
    if( is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 1)] =  NA

 }
}

x.weights = x * weights

numerator <- sapply(seq(1,ncol(x.weights),2), function(i) {
  apply(x.weights[,c(i, i+1)], 1, sum, na.rm=T)
})

denominator <- sapply(seq(1,ncol(weights),2), function(i) {
  apply(weights[,c(i, i+1)], 1, sum, na.rm=T)
})

weighted.x <- numerator/denominator

for(i in 1: (ncol(x)/2)) {
  for(j in 1:   nrow(x)      ) {

    if( is.na(x[j,(1 + (i-1)*2)]) & !is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  sum(c(x[j,(1 + ((i-1)*2))], x[j,(1 + ((i-1)*2 + 1))]), na.rm = TRUE) 
    if(!is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  sum(c(x[j,(1 + ((i-1)*2))], x[j,(1 + ((i-1)*2 + 1))]), na.rm = TRUE) 
    if( is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  NA 

 }
}

return(weighted.x)

}

fn.2.output <- fn.2(x, weights)

fn.2.output <- as.data.frame(fn.2.output)
names(fn.2.output) <- paste('X', 1:(n.cols/2), sep = "")

#########################################################################################

# nested for-loops with 2 if statements

fn.3 <- function(x, weights){

for(i in 1: (ncol(x)/2)) {
  for(j in 1: nrow(x)) {

    if( is.na(x[j,(1 + (i-1)*2)]) & !is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 0)] =  (x[j,(1 + ((i-1)*2 + 1))] / weights[j,(1 + ((i-1)*2 + 1))]) * weights[j,(1 + (i-1)*2 + 0)]
    if(!is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) x[j,(1 + (i-1)*2 + 1)] =  (x[j,(1 + ((i-1)*2 + 0))] / weights[j,(1 + ((i-1)*2 + 0))]) * weights[j,(1 + (i-1)*2 + 1)] 

 }
}

x.weights = x * weights

numerator <- sapply(seq(1,ncol(x.weights),2), function(i) {
  apply(x.weights[,c(i, i+1)], 1, sum, na.rm=T)
})

denominator <- sapply(seq(1,ncol(weights),2), function(i) {
  apply(weights[,c(i, i+1)], 1, sum, na.rm=T)
})

weighted.x <- numerator/denominator

for(i in 1: (ncol(x)/2)) {
  for(j in 1:   nrow(x)      ) {

    if( is.na(x[j,(1 + (i-1)*2)]) & !is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  sum(c(x[j,(1 + ((i-1)*2))], x[j,(1 + ((i-1)*2 + 1))]), na.rm = TRUE) 
    if(!is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  sum(c(x[j,(1 + ((i-1)*2))], x[j,(1 + ((i-1)*2 + 1))]), na.rm = TRUE) 
    if( is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  NA 

 }
}

return(weighted.x)

}

fn.3.output <- fn.3(x, weights)

fn.3.output <- as.data.frame(fn.3.output)
names(fn.3.output) <- paste('X', 1:(n.cols/2), sep = "")

#########################################################################################

# my reshape solution

fn.4 <- function(x, weights){

new.x    <- reshape(x      , direction="long", varying = list(seq(1,(n.cols-1),2), seq(2,n.cols,2)), v.names = c("v1", "v2"))
wt       <- reshape(weights, direction="long", varying = list(seq(1,(n.cols-1),2), seq(2,n.cols,2)), v.names = c("w1", "w2"))

new.x$v1 <- ifelse(is.na(new.x$v1), (new.x$v2 / wt$w2) * wt$w1, new.x$v1)
new.x$v2 <- ifelse(is.na(new.x$v2), (new.x$v1 / wt$w1) * wt$w2, new.x$v2)

x2  <- reshape(new.x, direction="wide", varying = list(seq(1,3,2), seq(2,4,2)), v.names = c("v1", "v2")) 

x <- x2[,2:(n.cols+1)]

x.weights = x * weights

numerator <- sapply(seq(1,ncol(x.weights),2), function(i) {
  apply(x.weights[,c(i, i+1)], 1, sum, na.rm=T)
})

denominator <- sapply(seq(1,ncol(weights),2), function(i) {
  apply(weights[,c(i, i+1)], 1, sum, na.rm=T)
})

weighted.x <- numerator/denominator

for(i in 1: (ncol(x)/2)) {
  for(j in 1:   nrow(x)      ) {

    if( is.na(x[j,(1 + (i-1)*2)]) & !is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  sum(c(x[j,(1 + ((i-1)*2))], x[j,(1 + ((i-1)*2 + 1))]), na.rm = TRUE) 
    if(!is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  sum(c(x[j,(1 + ((i-1)*2))], x[j,(1 + ((i-1)*2 + 1))]), na.rm = TRUE) 
    if( is.na(x[j,(1 + (i-1)*2)]) &  is.na(x[j,(1 + (i-1)*2 + 1)])) weighted.x[j,i] =  NA 

 }
}

return(weighted.x)

}

fn.4.output <- fn.4(x, weights)

fn.4.output <- as.data.frame(fn.4.output)
names(fn.4.output) <- paste('X', 1:(n.cols/2), sep = "")

#########################################################################################

rownames(fn.1.output) <- NULL
rownames(fn.2.output) <- NULL
rownames(fn.3.output) <- NULL
rownames(fn.4.output) <- NULL

all.equal(fn.1.output, fn.2.output)
all.equal(fn.1.output, fn.3.output)
all.equal(fn.1.output, fn.4.output)
all.equal(fn.2.output, fn.3.output)
all.equal(fn.2.output, fn.4.output)
all.equal(fn.3.output, fn.4.output)

library(microbenchmark)

microbenchmark(fn.1(x, weights), fn.2(x, weights), fn.3(x, weights), fn.4(x, weights), times=20)

#########################################################################################