我有一个数据框,其中包含有关各种对象的位置的信息,以及每个对象的唯一索引(在这种情况下,索引与数据框无关)。这是一些示例数据:
ind pos
x y z
-1.0 7.0 0.0 21 [-2.76788330078, 217.786453247, 26.6822681427]
0.0 22 [-7.23852539062, 217.274139404, 26.6758270264]
0.0 1.0 152 [-0.868591308594, 2.48404550552, 48.4036369324]
6.0 2.0 427 [-0.304443359375, 182.772140503, 79.4475860596]
实际数据帧很长。我编写了一个函数,将两个向量作为输入并输出它们之间的距离:
def dist(a, b):
diff = N.array(a)-N.array(b)
d = N.sqrt(N.dot(diff, diff))
return d
和一个给定两个数组的函数,将输出这些数组之间元素的所有唯一组合:
def getPairs(a, b):
if N.array_equal(a, b):
pairs = [(a[i], b[j]) for i in range(len(a)) for j in range(i+1,
len(b))]
else:
pairs = [(a[i], b[j]) for i in range(len(a)) for j in range(len(b))]
return pairs
我想获取数据框并查找所有元素对之间的距离小于某个值(例如30)的所有元素对。对于满足该要求的元素对,我还需要存储我在其他元素中计算出的距离数据框。这是我尝试解决的尝试,但是事实证明这非常缓慢。
pairs = [getPairs(list(group.ind), list(boxes.get_group((name[0]+i, name[1]+j, name[2]+k)).ind)) \
for i in [0,1] for j in [0,1] for k in [0,1] if name[0]+i != 34 and name[1]+j != 34 and name[2]+k != 34]
pairs = list(itertools.chain(*pairs))
subInfo = pandas.DataFrame()
subInfo['pairs'] = pairs
subInfo['r'] = subInfo.pairs.apply(lambda x: dist(df_yz.query('ind == @x[0]').pos[0], df_yz.query('ind == @x[1]').pos[0]))
不要担心我在此for循环中迭代的内容,它适用于我正在处理的系统,并且不是我变慢的地方。我使用.query()的步骤是发生严重卡纸的地方。
我正在寻找的输出是这样的:
pair distance
(21, 22) 22.59
(21, 152) 15.01
(22, 427) 19.22
我增加了距离,配对列表会更长,但这是基本的想法。
答案 0 :(得分:1)
花点时间,但这是您可能的解决方法。希望他们能自我解释。在Jupyter Notebook中以Python 3.x编写。备注:如果您的坐标是世界坐标,则可以考虑使用Haversine距离(圆距离)而不是直线的欧几里得距离。
首先,创建您的数据
import pandas as pd
import numpy as np
values = [
{ 'x':-1.0, 'y':7.0, 'z':0.0, 'ind':21, 'pos':[-2.76788330078, 217.786453247, 26.6822681427] },
{ 'z':0.0, 'ind':22, 'pos':[-7.23852539062, 217.274139404, 26.6758270264] },
{ 'y':0.0, 'z':1.0, 'ind':152, 'pos':[-0.868591308594, 2.48404550552, 48.4036369324] },
{ 'y':6.0, 'z':2.0, 'ind':427, 'pos':[-0.304443359375, 182.772140503, 79.4475860596] }
]
def dist(a, b):
"""
Calculates the Euclidean distance between two 3D-vectors.
"""
diff = np.array(a) - np.array(b)
d = np.sqrt(np.dot(diff, diff))
return d
df_initial = pd.DataFrame(values)
以下三种解决方案将生成此输出:
pairs distance
1 (21, 22) 4.499905
3 (21, 427) 63.373886
7 (22, 427) 63.429709
第一个解决方案是基于数据与自身的完全结合。缺点是,如果数据集很大,它可能会超出您的内存。优点是易于阅读的代码以及仅使用Pandas:
#%%time
df = df_initial.copy()
# join data with itself, each line will contain two geo-positions
df['tmp'] = 1
df = df.merge(df, on='tmp', suffixes=['1', '2']).drop('tmp', axis=1)
# remove rows with similar index
df = df[df['ind1'] != df['ind2']]
# calculate distance for all
df['distance'] = df.apply(lambda row: dist(row['pos1'], row['pos2']), axis=1)
# filter only those within a specific distance
df = df[df['distance'] < 70]
# combine original indices into a tuple
df['pairs'] = list(zip(df['ind1'], df['ind2']))
# select columns of interest
df = df[['pairs', 'distance']]
def sort_tuple(idx):
x, y = idx
if y < x:
return y, x
return x, y
# sort values of each tuple from low to high
df['pairs'] = df['pairs'].apply(sort_tuple)
# drop duplicates
df.drop_duplicates(subset=['pairs'], inplace=True)
# print result
df
第二个解决方案试图通过逐行迭代原始数据并计算当前行与原始数据之间的距离,同时仅保留满足以下条件的值来避免第一个版本的内存问题最小距离约束。我原本希望表现不佳,但一点也不差(请参阅最后的摘要)。
#%%time
df = df_initial.copy()
results = list()
for index, row1 in df.iterrows():
# calculate distance between current coordinate and all original rows in the data
df['distance'] = df.apply(lambda row2: dist(row1['pos'], row2['pos']), axis=1)
# filter only those within a specific distance and drop rows with same index as current coordinate
df_tmp = df[(df['distance'] < 70) & (df['ind'] != row1['ind'])].copy()
# prepare final data
df_tmp['ind2'] = row1['ind']
df_tmp['pairs'] = list(zip(df_tmp['ind'], df_tmp['ind2']))
# remember data
results.append(df_tmp)
# combine all into one dataframe
df = pd.concat(results)
# select columns of interest
df = df[['pairs', 'distance']]
def sort_tuple(idx):
x, y = idx
if y < x:
return y, x
return x, y
# sort values of each tuple from low to high
df['pairs'] = df['pairs'].apply(sort_tuple)
# drop duplicates
df.drop_duplicates(subset=['pairs'], inplace=True)
# print result
df
第三种解决方案是基于使用Scipy的KDTree进行的空间运算。
#%%time
from scipy import spatial
tree = spatial.KDTree(list(df_initial['pos']))
# calculate distances (returns a sparse matrix)
distances = tree.sparse_distance_matrix(tree, max_distance=70)
# convert to a Coordinate (coo) representation of the Compresses-Sparse-Column (csc) matrix.
coo = distances.tocoo(copy=False)
def get_cell_value(idx: int, column: str = 'ind'):
return df_initial.iloc[idx][column]
def extract_indices(row):
distance, idx1, idx2 = row
return get_cell_value(int(idx1)), get_cell_value(int(idx2))
df = pd.DataFrame({'idx1': coo.row, 'idx2': coo.col, 'distance': coo.data})
df['pairs'] = df.apply(extract_indices, axis=1)
# select columns of interest
df = df[['pairs', 'distance']]
def sort_tuple(idx):
x, y = idx
if y < x:
return y, x
return x, y
# sort values of each tuple from low to high
df['pairs'] = df['pairs'].apply(sort_tuple)
# drop duplicates
df.drop_duplicates(subset=['pairs'], inplace=True)
# print result
df
那性能呢?如果您只想知道原始数据的哪一行在所需距离之内,那么KDTree版本(第三版)将非常快。生成稀疏矩阵只需花费 4ms 。但是由于我随后使用了该矩阵中的索引来从原始数据中提取数据,因此性能下降了。当然,应该在完整的数据集上对此进行测试。