在numpy中迭代两个没有nditer的数组?

时间:2013-05-20 09:30:37

标签: python arrays multidimensional-array numpy

考虑numpy数组的规范,通常用于指定matplotlib绘图数据:

t = np.arange(0.0,1.5,0.25)
s = np.sin(2*np.pi*t) 

基本上,这会将x数据点的(x,y)坐标存储在数组t中;以及数组y中生成的sin(x)坐标(y = f(x)的结果,在本例中为s)。然后,使用numpy.nditer函数获取ts中连续的条目对非常方便,代表数据点的(x,y)坐标,如下所示:

for x, y in np.nditer([t,s]):
  print("xy: %f:%f" % (x,y))

所以,我正在尝试将以下代码段作为test.py

import numpy as np
print("numpy version {0}".format(np.__version__))
t = np.arange(0.0,1.5,0.25)   ; print("t", ["%+.2e"%i for i in t])
s = np.sin(2*np.pi*t)         ; print("s", ["%+.2e"%i for i in s])
print("i", ["% 9d"%i for i in range(0, len(t))])
for x, y in np.nditer([t,s]):
  print("xy: %f:%f" % (x,y))

......结果是:

$ python3.2 test.py 
numpy version 1.7.0
t ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00']
s ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00']
i ['        0', '        1', '        2', '        3', '        4', '        5']
xy: 0.000000:0.000000
xy: 0.250000:1.000000
xy: 0.500000:0.000000
xy: 0.750000:-1.000000
xy: 1.000000:-0.000000
xy: 1.250000:1.000000

$ python2.7 test.py 
numpy version 1.5.1
('t', ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00'])
('s', ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00'])
('i', ['        0', '        1', '        2', '        3', '        4', '        5'])
Traceback (most recent call last):
  File "test.py", line 10, in <module>
    for x, y in np.nditer([t,s]):
AttributeError: 'module' object has no attribute 'nditer'

啊 - 事实证明,the iterator object nditer, introduced in NumPy 1.6在我的Python 2.7安装的numpy版本中不可用。

所以,由于我也想支持这个特定的版本,我需要找到一种适用于旧numpy的方法 - 但我仍然希望只是指定for x,y in somearray的便利性,并在循环中直接获取坐标。

在使用numpy文档搞砸了之后,我想出了这个getXyIter函数:

import numpy as np
print("numpy version {0}".format(np.__version__))
t = np.arange(0.0,1.5,0.25)   ; print("t", ["%+.2e"%i for i in t])
s = np.sin(2*np.pi*t)         ; print("s", ["%+.2e"%i for i in s])
print("i", ["% 9d"%i for i in range(0, len(t))])

def getXyIter(inarr):
  if np.__version__ >= "1.6.0":
    return np.nditer(inarr.tolist())
  else:
    dimensions = inarr.shape
    xlen = dimensions[1]
    xinds = np.arange(0, xlen, 1)
    return np.transpose(np.take(inarr, xinds, axis=1))

for x, y in getXyIter(np.array([t,s])):
  print("xyIt: %f:%f" % (x,y))

for x, y in np.nditer([t,s]):
  print("xynd: %f:%f" % (x,y))

......似乎工作正常

$ python2.7 test.py 
numpy version 1.5.1
('t', ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00'])
('s', ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00'])
('i', ['        0', '        1', '        2', '        3', '        4', '        5'])
xyIt: 0.000000:0.000000
xyIt: 0.250000:1.000000
xyIt: 0.500000:0.000000
xyIt: 0.750000:-1.000000
xyIt: 1.000000:-0.000000
xyIt: 1.250000:1.000000
Traceback (most recent call last):
  File "test.py", line 23, in <module>
    for x, y in np.nditer([t,s]):
AttributeError: 'module' object has no attribute 'nditer'
$ python3.2 test.py 
numpy version 1.7.0
t ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00']
s ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00']
i ['        0', '        1', '        2', '        3', '        4', '        5']
xyIt: 0.000000:0.000000
xyIt: 0.250000:1.000000
xyIt: 0.500000:0.000000
xyIt: 0.750000:-1.000000
xyIt: 1.000000:-0.000000
xyIt: 1.250000:1.000000
xynd: 0.000000:0.000000
xynd: 0.250000:1.000000
xynd: 0.500000:0.000000
xynd: 0.750000:-1.000000
xynd: 1.000000:-0.000000
xynd: 1.250000:1.000000

我的问题是 - 就这样,这种迭代应该在numpy&lt; numpy的版本中完成。 1.6.0?

3 个答案:

答案 0 :(得分:4)

concatenating两个向量放到数组中怎么样:

for x,y in np.c_[t,s]:
    print("xy: %f:%f" % (x,y))

这给出了

xy: 0.000000:0.000000
xy: 0.250000:1.000000
xy: 0.500000:0.000000
xy: 0.750000:-1.000000
xy: 1.000000:-0.000000
xy: 1.250000:1.000000

如果您想迭代以便节省内存,可以使用itertools.izip功能:

for x,y in itertools.izip(t,s):
    print("xy: %f:%f" % (x,y))

答案 1 :(得分:1)

for x, y in zip(t,s):。对于1d阵列,它真的很简单。

已经验证可以在Python 2和Python 3中工作.zip()会在Python2上返回一个列表,因此DiggyF建议,itertools.izip()可能更适合大型数组。

对于&gt; 1D数组,迭代移动通过返回(N-1)D数组的最后一维。如果你必须处理N-d阵列,这可能是也可能不是你想要的。

无论如何,它毫无疑问是可移植的,并且迭代数组对象旨在支持这种用例:)

答案 2 :(得分:0)

这对我有用

x = x.flatten()
y = y.flatten()
for i,j in zip(x,y):
     #do something