考虑numpy
数组的规范,通常用于指定matplotlib
绘图数据:
t = np.arange(0.0,1.5,0.25)
s = np.sin(2*np.pi*t)
基本上,这会将x
数据点的(x,y)
坐标存储在数组t
中;以及数组y
中生成的sin(x)
坐标(y = f(x)的结果,在本例中为s
)。然后,使用numpy.nditer
函数获取t
和s
中连续的条目对非常方便,代表数据点的(x,y)
坐标,如下所示:
for x, y in np.nditer([t,s]):
print("xy: %f:%f" % (x,y))
所以,我正在尝试将以下代码段作为test.py
:
import numpy as np
print("numpy version {0}".format(np.__version__))
t = np.arange(0.0,1.5,0.25) ; print("t", ["%+.2e"%i for i in t])
s = np.sin(2*np.pi*t) ; print("s", ["%+.2e"%i for i in s])
print("i", ["% 9d"%i for i in range(0, len(t))])
for x, y in np.nditer([t,s]):
print("xy: %f:%f" % (x,y))
......结果是:
$ python3.2 test.py
numpy version 1.7.0
t ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00']
s ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00']
i [' 0', ' 1', ' 2', ' 3', ' 4', ' 5']
xy: 0.000000:0.000000
xy: 0.250000:1.000000
xy: 0.500000:0.000000
xy: 0.750000:-1.000000
xy: 1.000000:-0.000000
xy: 1.250000:1.000000
$ python2.7 test.py
numpy version 1.5.1
('t', ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00'])
('s', ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00'])
('i', [' 0', ' 1', ' 2', ' 3', ' 4', ' 5'])
Traceback (most recent call last):
File "test.py", line 10, in <module>
for x, y in np.nditer([t,s]):
AttributeError: 'module' object has no attribute 'nditer'
啊 - 事实证明,the iterator object nditer, introduced in NumPy 1.6在我的Python 2.7安装的numpy
版本中不可用。
所以,由于我也想支持这个特定的版本,我需要找到一种适用于旧numpy
的方法 - 但我仍然希望只是指定for x,y in somearray
的便利性,并在循环中直接获取坐标。
在使用numpy
文档搞砸了之后,我想出了这个getXyIter
函数:
import numpy as np
print("numpy version {0}".format(np.__version__))
t = np.arange(0.0,1.5,0.25) ; print("t", ["%+.2e"%i for i in t])
s = np.sin(2*np.pi*t) ; print("s", ["%+.2e"%i for i in s])
print("i", ["% 9d"%i for i in range(0, len(t))])
def getXyIter(inarr):
if np.__version__ >= "1.6.0":
return np.nditer(inarr.tolist())
else:
dimensions = inarr.shape
xlen = dimensions[1]
xinds = np.arange(0, xlen, 1)
return np.transpose(np.take(inarr, xinds, axis=1))
for x, y in getXyIter(np.array([t,s])):
print("xyIt: %f:%f" % (x,y))
for x, y in np.nditer([t,s]):
print("xynd: %f:%f" % (x,y))
......似乎工作正常
$ python2.7 test.py
numpy version 1.5.1
('t', ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00'])
('s', ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00'])
('i', [' 0', ' 1', ' 2', ' 3', ' 4', ' 5'])
xyIt: 0.000000:0.000000
xyIt: 0.250000:1.000000
xyIt: 0.500000:0.000000
xyIt: 0.750000:-1.000000
xyIt: 1.000000:-0.000000
xyIt: 1.250000:1.000000
Traceback (most recent call last):
File "test.py", line 23, in <module>
for x, y in np.nditer([t,s]):
AttributeError: 'module' object has no attribute 'nditer'
$ python3.2 test.py
numpy version 1.7.0
t ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00']
s ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00']
i [' 0', ' 1', ' 2', ' 3', ' 4', ' 5']
xyIt: 0.000000:0.000000
xyIt: 0.250000:1.000000
xyIt: 0.500000:0.000000
xyIt: 0.750000:-1.000000
xyIt: 1.000000:-0.000000
xyIt: 1.250000:1.000000
xynd: 0.000000:0.000000
xynd: 0.250000:1.000000
xynd: 0.500000:0.000000
xynd: 0.750000:-1.000000
xynd: 1.000000:-0.000000
xynd: 1.250000:1.000000
我的问题是 - 就这样,这种迭代应该在numpy&lt; numpy的版本中完成。 1.6.0?
答案 0 :(得分:4)
将concatenating两个向量放到数组中怎么样:
for x,y in np.c_[t,s]:
print("xy: %f:%f" % (x,y))
这给出了
xy: 0.000000:0.000000
xy: 0.250000:1.000000
xy: 0.500000:0.000000
xy: 0.750000:-1.000000
xy: 1.000000:-0.000000
xy: 1.250000:1.000000
如果您想迭代以便节省内存,可以使用itertools.izip
功能:
for x,y in itertools.izip(t,s):
print("xy: %f:%f" % (x,y))
答案 1 :(得分:1)
for x, y in zip(t,s):
。对于1d阵列,它真的很简单。
已经验证可以在Python 2和Python 3中工作.zip()会在Python2上返回一个列表,因此DiggyF建议,itertools.izip()
可能更适合大型数组。
对于&gt; 1D数组,迭代移动通过返回(N-1)D数组的最后一维。如果你必须处理N-d阵列,这可能是也可能不是你想要的。
无论如何,它毫无疑问是可移植的,并且迭代数组对象旨在支持这种用例:)
答案 2 :(得分:0)
这对我有用
x = x.flatten()
y = y.flatten()
for i,j in zip(x,y):
#do something