我有一个描述Point的类(有2个坐标x和y)和一个描述Polygon的类,它有一个与角对应的Points列表(self.corners) 我需要检查一个Point是否在多边形
这是应该检查多边形中的Point in的函数。我正在使用Ray Casting Method
def in_me(self, point):
result = False
n = len(self.corners)
p1x = int(self.corners[0].x)
p1y = int(self.corners[0].y)
for i in range(n+1):
p2x = int(self.corners[i % n].x)
p2y = int(self.corners[i % n].y)
if point.y > min(p1y,p2y):
if point.x <= max(p1x,p2x):
if p1y != p2y:
xinters = (point.y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
print xinters
if p1x == p2x or point.x <= xinters:
result = not result
p1x,p1y = p2x,p2y
return result
我使用以下形状进行测试并指出:
PG1 = (0,0), (0,2), (2,2), (2,0)
point = (1,1)
即使该行内的点,脚本也会愉快地返回False。我无法找到错误
答案 0 :(得分:56)
我建议使用Path
matplotlib
类
import matplotlib.path as mplPath
import numpy as np
poly = [190, 50, 500, 310]
bbPath = mplPath.Path(np.array([[poly[0], poly[1]],
[poly[1], poly[2]],
[poly[2], poly[3]],
[poly[3], poly[0]]]))
bbPath.contains_point((200, 100))
(如果你想测试多个点,还有一个contains_points
函数)
答案 1 :(得分:3)
我想在那里建议一些其他变化:
def contains(self, point):
if not self.corners:
return False
def lines():
p0 = self.corners[-1]
for p1 in self.corners:
yield p0, p1
p0 = p1
for p1, p2 in lines():
... # perform actual checks here
注意:
continue
或使用and
,而不是许多嵌套的if结构。答案 2 :(得分:0)
步骤:
intersect
功能
def ccw(A,B,C):
return (C.y-A.y) * (B.x-A.x) > (B.y-A.y) * (C.x-A.x)
# Return true if line segments AB and CD intersect
def intersect(A,B,C,D):
return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)
def point_in_polygon(pt, poly, inf):
result = False
for i in range(len(poly.corners)-1):
if intersect((poly.corners[i].x, poly.corners[i].y), ( poly.corners[i+1].x, poly.corners[i+1].y), (pt.x, pt.y), (inf, pt.y)):
result = not result
if intersect((poly.corners[-1].x, poly.corners[-1].y), (poly.corners[0].x, poly.corners[0].y), (pt.x, pt.y), (inf, pt.y)):
result = not result
return result
请注意,inf
参数应该是图中x轴的最大点。
答案 3 :(得分:0)
我正在尝试为我的项目解决相同的问题,并且我从网络中的某人那里获得了此代码。
#!/usr/bin/env python
#
# routine for performing the "point in polygon" inclusion test
# Copyright 2001, softSurfer (www.softsurfer.com)
# This code may be freely used and modified for any purpose
# providing that this copyright notice is included with it.
# SoftSurfer makes no warranty for this code, and cannot be held
# liable for any real or imagined damage resulting from its use.
# Users of this code must verify correctness for their application.
# translated to Python by Maciej Kalisiak <mac@dgp.toronto.edu>
# a Point is represented as a tuple: (x,y)
#===================================================================
# is_left(): tests if a point is Left|On|Right of an infinite line.
# Input: three points P0, P1, and P2
# Return: >0 for P2 left of the line through P0 and P1
# =0 for P2 on the line
# <0 for P2 right of the line
# See: the January 2001 Algorithm "Area of 2D and 3D Triangles and Polygons"
def is_left(P0, P1, P2):
return (P1[0] - P0[0]) * (P2[1] - P0[1]) - (P2[0] - P0[0]) * (P1[1] - P0[1])
#===================================================================
# cn_PnPoly(): crossing number test for a point in a polygon
# Input: P = a point,
# V[] = vertex points of a polygon
# Return: 0 = outside, 1 = inside
# This code is patterned after [Franklin, 2000]
def cn_PnPoly(P, V):
cn = 0 # the crossing number counter
# repeat the first vertex at end
V = tuple(V[:])+(V[0],)
# loop through all edges of the polygon
for i in range(len(V)-1): # edge from V[i] to V[i+1]
if ((V[i][1] <= P[1] and V[i+1][1] > P[1]) # an upward crossing
or (V[i][1] > P[1] and V[i+1][1] <= P[1])): # a downward crossing
# compute the actual edge-ray intersect x-coordinate
vt = (P[1] - V[i][1]) / float(V[i+1][1] - V[i][1])
if P[0] < V[i][0] + vt * (V[i+1][0] - V[i][0]): # P[0] < intersect
cn += 1 # a valid crossing of y=P[1] right of P[0]
return cn % 2 # 0 if even (out), and 1 if odd (in)
#===================================================================
# wn_PnPoly(): winding number test for a point in a polygon
# Input: P = a point,
# V[] = vertex points of a polygon
# Return: wn = the winding number (=0 only if P is outside V[])
def wn_PnPoly(P, V):
wn = 0 # the winding number counter
# repeat the first vertex at end
V = tuple(V[:]) + (V[0],)
# loop through all edges of the polygon
for i in range(len(V)-1): # edge from V[i] to V[i+1]
if V[i][1] <= P[1]: # start y <= P[1]
if V[i+1][1] > P[1]: # an upward crossing
if is_left(V[i], V[i+1], P) > 0: # P left of edge
wn += 1 # have a valid up intersect
else: # start y > P[1] (no test needed)
if V[i+1][1] <= P[1]: # a downward crossing
if is_left(V[i], V[i+1], P) < 0: # P right of edge
wn -= 1 # have a valid down intersect
return wn