我在MATLAB中使用k-means。我正在尝试创建绘图/图形,但我的数据有三维数组。这是我的k-means代码:
clc
clear all
close all
load cobat.txt; % read the file
k=input('Enter a number: '); % determine the number of cluster
isRand=0; % 0 -> sequeantial initialization
% 1 -> random initialization
[maxRow, maxCol]=size(cobat);
if maxRow<=k,
y=[m, 1:maxRow];
elseif k>7
h=msgbox('cant more than 7');
else
% initial value of centroid
if isRand,
p = randperm(size(cobat,1)); % random initialization
for i=1:k
c(i,:)=cobat(p(i),:);
end
else
for i=1:k
c(i,:)=cobat(i,:); % sequential initialization
end
end
temp=zeros(maxRow,1); % initialize as zero vector
u=0;
while 1,
d=DistMatrix3(cobat,c); % calculate the distance
[z,g]=min(d,[],2); % set the matrix g group
if g==temp, % if the iteration doesn't change anymore
break; % stop the iteration
else
temp=g; % copy the matrix to the temporary variable
end
for i=1:k
f=find(g==i);
if f % calculate the new centroid
c(i,:)=mean(cobat(find(g==i),:),1);
end
end
c
[B,index] = sortrows( c ); % sort the centroids
g = index(g); % arrange the labels based on centroids
end
y=[cobat,g]
hold off;
%This plot is actually placed in plot 3D code (last line), but I put it into here, because I think this is the plotting line
f = PlotClusters(cobat,g,y,Colors) %Here is the error
if Dimensions==2
for i=1:NumOfDataPoints %plot data points
plot(cobat(i,1),cobat(i,2),'.','Color',Colors(g(i),:))
hold on
end
for i=1:NumOfCenters %plot the centers
plot(y(i,1),y(i,2),'s','Color',Colors(i,:))
end
else
for i=1:NumOfDataPoints %plot data points
plot3(cobat(i,1),cobat(i,2),cobat(i,3),'.','Color',Colors(g(i),:))
hold on
end
for i=1:NumOfCenters %plot the centers
plot3(y(i,1),y(i,2),y(i,3),'s','Color',Colors(i,:))
end
end
end
这是情节3D代码:
%This function plots clustering data, for example the one provided by
%kmeans. To be able to plot, the number of dimensions has to be either 2 or
%3.
%Inputs:
% Data - an m-by-d matrix, where m is the number of data points to
% cluster and d is the number of dimensions. In my code, it is cobat
% IDX - an m-by-1 indices vector, where each element gives the
% cluster to which the corresponding data point in Data belongs. In my file, it is 'g'
% Centers y - an optional c-by-d matrix, where c is the number of
% clusters and d is the dimensions of the problem. The matrix
% gives the location of the cluster centers. If this is not
% given, the centers will be calculated. In my file, I think, it is 'y'
% Colors - an optional color scheme generated by hsv. If this is not
% given, a color scheme will be generated.
%
function f = PlotClusters(cobat,g,y,Colors)
%Checking inputs
switch nargin
case 1 %Not enough inputs
error('Clustering data is required to plot clusters. Usage: PlotClusters(Data,IDX,Centers,Colors)')
case 2 %Need to calculate cluster centers and color scheme
[NumOfDataPoints,Dimensions]=size(cobat);
if Dimensions~=2 && Dimensions~=3 %Check ability to plot
error('It is only possible to plot in 2 or 3 dimensions.')
end
if length(g)~=NumOfDataPoints %Check that each data point is assigned to a cluster
error('The number of data points in Data must be equal to the number of indices in IDX.')
end
NumOfClusters=max(g);
Centers=zeros(NumOfClusters,Dimensions);
NumOfCenters=NumOfClusters;
NumOfPointsInCluster=zeros(NumOfClusters,1);
for i=1:NumOfDataPoints
Centers(g(i),:)=y(g(i),:)+cobat(i,:);
NumOfPointsInCluster(g(i))=NumOfPointsInCluster(g(i))+1;
end
for i=1:NumOfClusters
y(i,:)=y(i,:)/NumOfPointsInCluster(i);
end
Colors=hsv(NumOfClusters);
case 3 %Need to calculate color scheme
[NumOfDataPoints,Dimensions]=size(cobat);
if Dimensions~=2 && Dimensions~=3 %Check ability to plot
error('It is only possible to plot in 2 or 3 dimensions.')
end
if length(g)~=NumOfDataPoints %Check that each data point is assigned to a cluster
error('The number of data points in Data must be equal to the number of indices in IDX.')
end
NumOfClusters=max(g);
[NumOfCenters,Dims]=size(y);
if Dims~=Dimensions
error('The number of dimensions in Data should be equal to the number of dimensions in Centers')
end
if NumOfCenters<NumOfClusters %Check that each cluster has a center
error('The number of cluster centers is smaller than the number of clusters.')
elseif NumOfCenters>NumOfClusters %Check that each cluster has a center
disp('There are more centers than clusters, all will be plotted')
end
Colors=hsv(NumOfCenters);
case 4 %All data is given just need to check consistency
[NumOfDataPoints,Dimensions]=size(cobat);
if Dimensions~=2 && Dimensions~=3 %Check ability to plot
error('It is only possible to plot in 2 or 3 dimensions.')
end
if length(g)~=NumOfDataPoints %Check that each data point is assigned to a cluster
error('The number of data points in Data must be equal to the number of indices in IDX.')
end
NumOfClusters=max(g);
[NumOfCenters,Dims]=size(y);
if Dims~=Dimensions
error('The number of dimensions in Data should be equal to the number of dimensions in Centers')
end
if NumOfCenters<NumOfClusters %Check that each cluster has a center
error('The number of cluster centers is smaller than the number of clusters.')
elseif NumOfCenters>NumOfClusters %Check that each cluster has a center
disp('There are more centers than clusters, all will be plotted')
end
[NumOfColors,RGB]=size(Colors);
if RGB~=3 || NumOfColors<NumOfCenters
error('Colors should have at least the same number of rows as number of clusters and 3 columns')
end
end
%Data is ready. Now plotting
end
这是错误:
??? Undefined function or variable 'Colors'.
Error in ==> clustere at 69
f = PlotClusters(cobat,g,y,Colors)
我错了这样的功能吗?我该怎么办?非常感谢您的帮助。
答案 0 :(得分:9)
你的代码非常混乱,而且不必要很长......
这是做同样事情的小例子。您需要使用统计工具箱来运行它(对于kmeans
函数和Iris数据集):
%# load dataset of 150 instances and 3 dimensions
load fisheriris
X = meas(:,1:3);
[numInst,numDims] = size(X);
%# K-means clustering
%# (K: number of clusters, G: assigned groups, C: cluster centers)
K = 3;
[G,C] = kmeans(X, K, 'distance','sqEuclidean', 'start','sample');
%# show points and clusters (color-coded)
clr = lines(K);
figure, hold on
scatter3(X(:,1), X(:,2), X(:,3), 36, clr(G,:), 'Marker','.')
scatter3(C(:,1), C(:,2), C(:,3), 100, clr, 'Marker','o', 'LineWidth',3)
hold off
view(3), axis vis3d, box on, rotate3d on
xlabel('x'), ylabel('y'), zlabel('z')
答案 1 :(得分:1)
答案 2 :(得分:0)
这是我们如何获取3d图形的示例代码。
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x =[1,2,3,4,5,6,7,8,9,10]
y =[5,6,2,3,13,4,1,2,4,8]
z =[2,3,3,3,5,7,9,11,9,10]
ax.scatter(x, y, z, c='r', marker='o')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()