在折线中找到最接近latlng的点

时间:2013-05-07 22:22:11

标签: javascript google-maps-api-3

我有一个我用谷歌地图指示服务获得的latlng绘制的多边形。 现在我想在折线上找到最接近给定点的点。

显而易见的方法(对我而言)是循环遍历折线中的所有点并找到它们与给定点之间的距离,但这是低效的,因为折线上的点可能很大。

我很高兴听到任何替代方案。 提前谢谢。

4 个答案:

答案 0 :(得分:12)

见比尔查德威克的例子:

http://www.bdcc.co.uk/Gmaps/BdccGmapBits.htm

above example ported to v3(此答案底部的代码)

在他的页面下:

  

与折线或多边形的距离

来自那篇文章:

这里有一个类似的,更好的演示http://wtp2.appspot.com/cSnapToRouteDemo.html

找到鼠标线上的最近点。另请注意,它是Google Maps API v2示例(但v3的原理与此相同)。

// Code to find the distance in metres between a lat/lng point and a polyline of lat/lng points
// All in WGS84. Free for any use.
//
// Bill Chadwick 2007
// updated to Google Maps API v3, Lawrence Ross 2014

        // Construct a bdccGeo from its latitude and longitude in degrees
        function bdccGeo(lat, lon) 
        {
            var theta = (lon * Math.PI / 180.0);
            var rlat = bdccGeoGeocentricLatitude(lat * Math.PI / 180.0);
            var c = Math.cos(rlat); 
            this.x = c * Math.cos(theta);
            this.y = c * Math.sin(theta);
            this.z = Math.sin(rlat);        
        }
        bdccGeo.prototype = new bdccGeo();

        // internal helper functions =========================================

        // Convert from geographic to geocentric latitude (radians).
        function bdccGeoGeocentricLatitude(geographicLatitude) 
        {
            var flattening = 1.0 / 298.257223563;//WGS84
            var f = (1.0 - flattening) * (1.0 - flattening);
            return Math.atan((Math.tan(geographicLatitude) * f));
        }

         // Returns the two antipodal points of intersection of two great
         // circles defined by the arcs geo1 to geo2 and
         // geo3 to geo4. Returns a point as a Geo, use .antipode to get the other point
        function bdccGeoGetIntersection( geo1,  geo2,  geo3,  geo4) 
        {
            var geoCross1 = geo1.crossNormalize(geo2);
            var geoCross2 = geo3.crossNormalize(geo4);
            return geoCross1.crossNormalize(geoCross2);
        }

        //from Radians to Meters
        function bdccGeoRadiansToMeters(rad)
        {
            return rad * 6378137.0; // WGS84 Equatorial Radius in Meters
        }

        //from Meters to Radians
        function bdccGeoMetersToRadians(m)
        {
            return m / 6378137.0; // WGS84 Equatorial Radius in Meters
        }

        // properties =================================================


        bdccGeo.prototype.getLatitudeRadians = function() 
        {
            return (bdccGeoGeographicLatitude(Math.atan2(this.z,
                Math.sqrt((this.x * this.x) + (this.y * this.y)))));
        }

        bdccGeo.prototype.getLongitudeRadians = function() 
        {
            return (Math.atan2(this.y, this.x));
        }

        bdccGeo.prototype.getLatitude = function() 
        {
            return this.getLatitudeRadians()  * 180.0 / Math.PI;
        }

        bdccGeo.prototype.getLongitude = function() 
        {
            return this.getLongitudeRadians()  * 180.0 / Math.PI ;
        }

        // Methods =================================================

        //Maths
        bdccGeo.prototype.dot = function( b) 
        {
            return ((this.x * b.x) + (this.y * b.y) + (this.z * b.z));
        }

        //More Maths
        bdccGeo.prototype.crossLength = function( b) 
        {
            var x = (this.y * b.z) - (this.z * b.y);
            var y = (this.z * b.x) - (this.x * b.z);
            var z = (this.x * b.y) - (this.y * b.x);
            return Math.sqrt((x * x) + (y * y) + (z * z));
        }

      //More Maths
        bdccGeo.prototype.scale = function( s) 
        {
            var r = new bdccGeo(0,0);
            r.x = this.x * s;
            r.y = this.y * s;
            r.z = this.z * s;
            return r;
        }

        // More Maths
        bdccGeo.prototype.crossNormalize = function( b) 
        {
            var x = (this.y * b.z) - (this.z * b.y);
            var y = (this.z * b.x) - (this.x * b.z);
            var z = (this.x * b.y) - (this.y * b.x);
            var L = Math.sqrt((x * x) + (y * y) + (z * z));
            var r = new bdccGeo(0,0);
            r.x = x / L;
            r.y = y / L;
            r.z = z / L;
            return r;
        }

      // point on opposite side of the world to this point
        bdccGeo.prototype.antipode = function() 
        {
            return this.scale(-1.0);
        }






        //distance in radians from this point to point v2
        bdccGeo.prototype.distance = function( v2) 
        {
            return Math.atan2(v2.crossLength(this), v2.dot(this));
        }

      //returns in meters the minimum of the perpendicular distance of this point from the line segment geo1-geo2
      //and the distance from this point to the line segment ends in geo1 and geo2 
        bdccGeo.prototype.distanceToLineSegMtrs = function(geo1, geo2)
        {            

            //point on unit sphere above origin and normal to plane of geo1,geo2
            //could be either side of the plane
            var p2 = geo1.crossNormalize(geo2); 

            // intersection of GC normal to geo1/geo2 passing through p with GC geo1/geo2
            var ip = bdccGeoGetIntersection(geo1,geo2,this,p2); 

            //need to check that ip or its antipode is between p1 and p2
            var d = geo1.distance(geo2);
            var d1p = geo1.distance(ip);
            var d2p = geo2.distance(ip);
            //window.status = d + ", " + d1p + ", " + d2p;
            if ((d >= d1p) && (d >= d2p)) 
                return bdccGeoRadiansToMeters(this.distance(ip));
            else
            {
                ip = ip.antipode(); 
                d1p = geo1.distance(ip);
                d2p = geo2.distance(ip);
            }
            if ((d >= d1p) && (d >= d2p)) 
                return bdccGeoRadiansToMeters(this.distance(ip)); 
            else 
                return bdccGeoRadiansToMeters(Math.min(geo1.distance(this),geo2.distance(this))); 
        }

        // distance in meters from GLatLng point to GPolyline or GPolygon poly
        function bdccGeoDistanceToPolyMtrs(poly, point)
        {
            var d = 999999999;
            var i;
            var p = new bdccGeo(point.lat(),point.lng());
            for(i=0; i<(poly.getPath().getLength()-1); i++)
                 {
                    var p1 = poly.getPath().getAt(i);
                    var l1 = new bdccGeo(p1.lat(),p1.lng());
                    var p2 = poly.getPath().getAt(i+1);
                    var l2 = new bdccGeo(p2.lat(),p2.lng());
                    var dp = p.distanceToLineSegMtrs(l1,l2);
                    if(dp < d)
                        d = dp;    
                 }
             return d;
        }

        // get a new GLatLng distanceMeters away on the compass bearing azimuthDegrees
        // from the GLatLng point - accurate to better than 200m in 140km (20m in 14km) in the UK

        function bdccGeoPointAtRangeAndBearing (point, distanceMeters, azimuthDegrees) 
        {
             var latr = point.lat() * Math.PI / 180.0;
             var lonr = point.lng() * Math.PI / 180.0;

             var coslat = Math.cos(latr); 
             var sinlat = Math.sin(latr); 
             var az = azimuthDegrees* Math.PI / 180.0;
             var cosaz = Math.cos(az); 
             var sinaz = Math.sin(az); 
             var dr = distanceMeters / 6378137.0; // distance in radians using WGS84 Equatorial Radius
             var sind = Math.sin(dr); 
             var cosd = Math.cos(dr);

            return new google.maps.LatLng(Math.asin((sinlat * cosd) + (coslat * sind * cosaz)) * 180.0 / Math.PI,
            (Math.atan2((sind * sinaz), (coslat * cosd) - (sinlat * sind * cosaz)) + lonr) * 180.0 / Math.PI); 
        }

答案 1 :(得分:11)

我需要一个移植到V3的更干净的版本,所以这里是:

/**
*   Snap marker to closest point on a line.
*
*   Based on Distance to line example by 
*   Marcelo, maps.forum.nu - http://maps.forum.nu/gm_mouse_dist_to_line.html 
*   Then 
*   @ work of Björn Brala - Swis BV who wrapped the algorithm in a class operating on GMap Objects
*   And now 
*   Bill Chadwick, who factored the basic algorithm out of the class (removing much intermediate storage of results)
*       and added distance along line to nearest point calculation
*   Followed by
*   Robert Crowe, who ported it to v3 of the Google Maps API and factored out the marker to make it more general.
*
*   Usage:
*
*   Create the class
*       var oSnap = new cSnapToRoute();
*
*   Initialize the subjects
*       oSnap.init(oMap, oPolyline);
*
**/

function cSnapToRoute() {

    this.routePoints = Array();
    this.routePixels = Array();
    this._oMap;
    this._oPolyline;

    /**
    *   @desc Initialize the objects.
    *   @param Map object
    *   @param GPolyline object - the 'route'
    **/
    this.init = function (oMap, oPolyline) {
        this._oMap = oMap;
        this._oPolyline = oPolyline;

        this.loadRouteData();   // Load needed data for point calculations
    }

    /**
    *   @desc internal use only, Load route points into RoutePixel array for calculations, do this whenever zoom changes 
    **/
    this.loadRouteData = function () {
        this.routePixels = new Array();
        var proj = this._oMap.getProjection();
        for (var i = 0; i < this._oPolyline.getPath().getLength(); i++) {
            var Px = proj.fromLatLngToPoint(this._oPolyline.getPath().getAt(i));
            this.routePixels.push(Px);
        }
    }

    /**
    *   @desc Get closest point on route to test point
    *   @param GLatLng() the test point
    *   @return new GLatLng();
    **/
    this.getClosestLatLng = function (latlng) {
        var r = this.distanceToLines(latlng);
        var proj = this._oMap.getProjection();
        return proj.fromPointToLatLng(new google.maps.Point(r.x, r.y));
    }

    /**
    *   @desc Get distance along route in meters of closest point on route to test point
    *   @param GLatLng() the test point
    *   @return distance in meters;
    **/
    this.getDistAlongRoute = function (latlng) {
        var r = this.distanceToLines(latlng);
        return this.getDistToLine(r.i, r.fTo);
    }

    /**
    *   @desc internal use only, gets test point xy and then calls fundamental algorithm
    **/
    this.distanceToLines = function (thisLatLng) {
        var tm = this._oMap;
        var proj = this._oMap.getProjection();
        var thisPx = proj.fromLatLngToPoint(thisLatLng);
        var routePixels = this.routePixels;
        return getClosestPointOnLines(thisPx, routePixels);
    }

    /**
    *   @desc internal use only, find distance along route to point nearest test point
    **/
    this.getDistToLine = function (iLine, fTo) {

        var routeOverlay = this._oPolyline;
        var d = 0;
        for (var n = 1 ; n < iLine ; n++) {
            d += routeOverlay.getPath().getAt(n - 1).distanceFrom(routeOverlay.getPath().getAt(n));
        }
        d += routeOverlay.getPath().getAt(iLine - 1).distanceFrom(routeOverlay.getPath().getAt(iLine)) * fTo;

        return d;
    }


}

/* desc Static function. Find point on lines nearest test point
   test point pXy with properties .x and .y
   lines defined by array aXys with nodes having properties .x and .y 
   return is object with .x and .y properties and property i indicating nearest segment in aXys 
   and property fFrom the fractional distance of the returned point from aXy[i-1]
   and property fTo the fractional distance of the returned point from aXy[i]   */


function getClosestPointOnLines(pXy, aXys) {

    var minDist;
    var fTo;
    var fFrom;
    var x;
    var y;
    var i;
    var dist;

    if (aXys.length > 1) {

        for (var n = 1 ; n < aXys.length ; n++) {

            if (aXys[n].x != aXys[n - 1].x) {
                var a = (aXys[n].y - aXys[n - 1].y) / (aXys[n].x - aXys[n - 1].x);
                var b = aXys[n].y - a * aXys[n].x;
                dist = Math.abs(a * pXy.x + b - pXy.y) / Math.sqrt(a * a + 1);
            }
            else
                dist = Math.abs(pXy.x - aXys[n].x)

            // length^2 of line segment 
            var rl2 = Math.pow(aXys[n].y - aXys[n - 1].y, 2) + Math.pow(aXys[n].x - aXys[n - 1].x, 2);

            // distance^2 of pt to end line segment
            var ln2 = Math.pow(aXys[n].y - pXy.y, 2) + Math.pow(aXys[n].x - pXy.x, 2);

            // distance^2 of pt to begin line segment
            var lnm12 = Math.pow(aXys[n - 1].y - pXy.y, 2) + Math.pow(aXys[n - 1].x - pXy.x, 2);

            // minimum distance^2 of pt to infinite line
            var dist2 = Math.pow(dist, 2);

            // calculated length^2 of line segment
            var calcrl2 = ln2 - dist2 + lnm12 - dist2;

            // redefine minimum distance to line segment (not infinite line) if necessary
            if (calcrl2 > rl2)
                dist = Math.sqrt(Math.min(ln2, lnm12));

            if ((minDist == null) || (minDist > dist)) {
                if (calcrl2 > rl2) {
                    if (lnm12 < ln2) {
                        fTo = 0;//nearer to previous point
                        fFrom = 1;
                    }
                    else {
                        fFrom = 0;//nearer to current point
                        fTo = 1;
                    }
                }
                else {
                    // perpendicular from point intersects line segment
                    fTo = ((Math.sqrt(lnm12 - dist2)) / Math.sqrt(rl2));
                    fFrom = ((Math.sqrt(ln2 - dist2)) / Math.sqrt(rl2));
                }
                minDist = dist;
                i = n;
            }
        }

        var dx = aXys[i - 1].x - aXys[i].x;
        var dy = aXys[i - 1].y - aXys[i].y;

        x = aXys[i - 1].x - (dx * fTo);
        y = aXys[i - 1].y - (dy * fTo);

    }

    return { 'x': x, 'y': y, 'i': i, 'fTo': fTo, 'fFrom': fFrom };
}

答案 2 :(得分:2)

我认为你不能避免检查所有要点。 如果未检查的点是最近的点会怎么样?

如果必须多次执行此操作,则可以选择针对此类搜索进行优化的数据结构,例如四叉树。 请注意,不应将lat lng用作Descartes坐标。

另见Finding nearest point in an efficient way 这适用于2D平面,而不适用于lat lng,但您可以近似:https://stackoverflow.com/a/16271669/59019

答案 3 :(得分:1)

受jmihalicza的回答启发,我想出了这个函数来找到一个LatLng数组中最接近给定LatLng的点。

函数nearest使用LatLng(llng)和LatLngs数组(listData)并找到数组中每个latlng与给定latlng之间的距离,然后找到最小距离并从列表中返回Latlng距离。

function closest(llng, listData) {
    var arr     = listData;
    var pnt     = llng;
    var distArr = [];
    var dist    = google.maps.geometry.spherical.computeDistanceBetween;


    for (index in arr)
        distArr.push([arr[index], dist(pnt, arr[index])]);

    return distArr.sort(function(a,b){
        return a[1]-b[1];
    })[0][0];
}

修改

如果您无法访问构成折线的LatLng数组,但可以访问折线本身,则可以使用折线的getPath method来获取MVC数组的路径,这样您就可以使用.getArray()返回一个LatLng数组,用于上述函数(最接近)。