如何删除numpy.array中的列

时间:2009-10-29 10:21:35

标签: python numpy scipy

我想删除numpy.array中的选定列。这就是我的工作:

n [397]: a = array([[ NaN,   2.,   3., NaN],
   .....:        [  1.,   2.,   3., 9]])

In [398]: print a
[[ NaN   2.   3.  NaN]
 [  1.   2.   3.   9.]]

In [399]: z = any(isnan(a), axis=0)

In [400]: print z
[ True False False  True]

In [401]: delete(a, z, axis = 1)
Out[401]:
 array([[  3.,  NaN],
       [  3.,   9.]])

在此示例中,我的目标是删除包含NaN的所有列。我期待最后一个命令 导致:

array([[2., 3.],
       [2., 3.]])

我该怎么做?

8 个答案:

答案 0 :(得分:69)

鉴于其名称,我认为标准方式应为delete

import numpy as np

A = np.delete(A, 1, 0)  # delete second row of A
B = np.delete(B, 2, 0)  # delete third row of B
C = np.delete(C, 1, 1)  # delete second column of C

根据numpy's documentation pagenumpy.delete的参数如下:

numpy.delete(arr, obj, axis=None)

  • arr指的是输入数组
  • obj指的是哪些子数组(例如列/行号或数组的切片)和
  • axis指的是列式(axis = 1)或行式(axis = 0)删除操作。

答案 1 :(得分:16)

来自the numpy documentation的示例:

>>> a = numpy.array([[ 0,  1,  2,  3],
               [ 4,  5,  6,  7],
               [ 8,  9, 10, 11],
               [12, 13, 14, 15]])

>>> numpy.delete(a, numpy.s_[1:3], axis=0)                       # remove rows 1 and 2

array([[ 0,  1,  2,  3],
       [12, 13, 14, 15]])

>>> numpy.delete(a, numpy.s_[1:3], axis=1)                       # remove columns 1 and 2

array([[ 0,  3],
       [ 4,  7],
       [ 8, 11],
       [12, 15]])

答案 2 :(得分:13)

另一种方法是使用蒙面数组:

import numpy as np
a = np.array([[ np.nan,   2.,   3., np.nan], [  1.,   2.,   3., 9]])
print(a)
# [[ NaN   2.   3.  NaN]
#  [  1.   2.   3.   9.]]

np.ma.masked_invalid方法返回一个掩码数组,其中nans和infs被掩盖:

print(np.ma.masked_invalid(a))
[[-- 2.0 3.0 --]
 [1.0 2.0 3.0 9.0]]

np.ma.compress_cols方法返回一个二维数组,其中任何列都包含一个 屏蔽值被抑制:

a=np.ma.compress_cols(np.ma.masked_invalid(a))
print(a)
# [[ 2.  3.]
#  [ 2.  3.]]

请参阅 manipulating-a-maskedarray

答案 3 :(得分:8)

这将创建另一个没有这些列的数组:

  b = a.compress(logical_not(z), axis=1)

答案 4 :(得分:6)

来自Numpy Documentation

np.delete(arr,obj,axis = None)     沿着删除的轴返回一个包含子数组的新数组。

>>> arr
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])
>>> np.delete(arr, 1, 0)
array([[ 1,  2,  3,  4],
       [ 9, 10, 11, 12]])

>>> np.delete(arr, np.s_[::2], 1)
array([[ 2,  4],
       [ 6,  8],
       [10, 12]])
>>> np.delete(arr, [1,3,5], None)
array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])

答案 5 :(得分:2)

在您的情况下,您可以使用以下内容提取所需数据:

a[:, -z]

“ - z”是布尔数组“z”的逻辑否定。这与:

相同
a[:, logical_not(z)]

答案 6 :(得分:1)

>>> A = array([[ 1,  2,  3,  4],
               [ 5,  6,  7,  8],
               [ 9, 10, 11, 12]])

>>> A = A.transpose()

>>> A = A[1:].transpose()

答案 7 :(得分:0)

删除包含NaN的Matrix列。 这是一个冗长的答案,但希望很容易理解。

def column_to_vector(matrix, i):
    return [row[i] for row in matrix]
import numpy
def remove_NaN_columns(matrix):
    import scipy
    import math
    from numpy import column_stack, vstack

    columns = A.shape[1]
    #print("columns", columns)
    result = []
    skip_column = True
    for column in range(0, columns):
        vector = column_to_vector(A, column)
        skip_column = False
        for value in vector:
            # print(column, vector, value, math.isnan(value) )
            if math.isnan(value):
                skip_column = True
        if skip_column == False:
            result.append(vector)
    return column_stack(result)

### test it
A = vstack(([ float('NaN'), 2., 3., float('NaN')], [ 1., 2., 3., 9]))
print("A shape", A.shape, "\n", A)
B = remove_NaN_columns(A)
print("B shape", B.shape, "\n", B)

A shape (2, 4) 
 [[ nan   2.   3.  nan]
 [  1.   2.   3.   9.]]
B shape (2, 2) 
 [[ 2.  3.]
 [ 2.  3.]]