如何加快Levenshtein距离计算

时间:2013-04-29 12:40:14

标签: python c performance optimization levenshtein-distance

我正在尝试运行模拟以测试随机之间的平均值Levenshtein distance 二进制字符串。

我的程序是在python中,但我正在使用这个C extension。大部分时间相关的函数计算两个字符串之间的Levenshtein距离,这就是这个。

lev_edit_distance(size_t len1, const lev_byte *string1,
                  size_t len2, const lev_byte *string2,
                  int xcost)
{
  size_t i;
  size_t *row;  /* we only need to keep one row of costs */
  size_t *end;
  size_t half;

  /* strip common prefix */
  while (len1 > 0 && len2 > 0 && *string1 == *string2) {
    len1--;
    len2--;
    string1++;
    string2++;
  }

  /* strip common suffix */
  while (len1 > 0 && len2 > 0 && string1[len1-1] == string2[len2-1]) {
    len1--;
    len2--;
  }

  /* catch trivial cases */
  if (len1 == 0)
    return len2;
  if (len2 == 0)
    return len1;

  /* make the inner cycle (i.e. string2) the longer one */
  if (len1 > len2) {
    size_t nx = len1;
    const lev_byte *sx = string1;
    len1 = len2;
    len2 = nx;
    string1 = string2;
    string2 = sx;
  }
  /* check len1 == 1 separately */
  if (len1 == 1) {
    if (xcost)
      return len2 + 1 - 2*(memchr(string2, *string1, len2) != NULL);
    else
      return len2 - (memchr(string2, *string1, len2) != NULL);
  }
  len1++;
  len2++;
  half = len1 >> 1;
  /* initalize first row */
  row = (size_t*)malloc(len2*sizeof(size_t));
  if (!row)
    return (size_t)(-1);
  end = row + len2 - 1;
  for (i = 0; i < len2 - (xcost ? 0 : half); i++)
    row[i] = i;

  /* go through the matrix and compute the costs.  yes, this is an extremely
   * obfuscated version, but also extremely memory-conservative and relatively
   * fast.  */
  if (xcost) {
    for (i = 1; i < len1; i++) {
      size_t *p = row + 1;
      const lev_byte char1 = string1[i - 1];
      const lev_byte *char2p = string2;
      size_t D = i;
      size_t x = i;
      while (p <= end) {
        if (char1 == *(char2p++))
          x = --D;
        else
          x++;
        D = *p;
        D++;
        if (x > D)
          x = D;
        *(p++) = x;
      }
    }
  }
  else {
    /* in this case we don't have to scan two corner triangles (of size len1/2)
     * in the matrix because no best path can go throught them. note this
     * breaks when len1 == len2 == 2 so the memchr() special case above is
     * necessary */
    row[0] = len1 - half - 1;
    for (i = 1; i < len1; i++) {
      size_t *p;
      const lev_byte char1 = string1[i - 1];
      const lev_byte *char2p;
      size_t D, x;
      /* skip the upper triangle */
      if (i >= len1 - half) {
        size_t offset = i - (len1 - half);
        size_t c3;

        char2p = string2 + offset;
        p = row + offset;
        c3 = *(p++) + (char1 != *(char2p++));
        x = *p;
        x++;
        D = x;
        if (x > c3)
          x = c3;
        *(p++) = x;
      }
      else {
        p = row + 1;
        char2p = string2;
        D = x = i;
      }
      /* skip the lower triangle */
      if (i <= half + 1)
        end = row + len2 + i - half - 2;
      /* main */
      while (p <= end) {
        size_t c3 = --D + (char1 != *(char2p++));
        x++;
        if (x > c3)
          x = c3;
        D = *p;
        D++;
        if (x > D)
          x = D;
        *(p++) = x;
      }
      /* lower triangle sentinel */
      if (i <= half) {
        size_t c3 = --D + (char1 != *char2p);
        x++;
        if (x > c3)
          x = c3;
        *p = x;
      }
    }
  }

  i = *end;
  free(row);
  return i;
}

这可以加快吗?

我将在AMD FX(tm)-8350八核处理器上运行32位ubuntu代码。

这是调用它的python代码。

from Levenshtein import distance
import random
for i in xrange(16):
    sum = 0
    for j in xrange(1000):
        str1 = bin(random.getrandbits(2**i))[2:].zfill(2**i)
        str2 = bin(random.getrandbits(2**i))[2:].zfill(2**i)
        sum += distance(str1,str2)
    print i,sum/(1000*2**i)

4 个答案:

答案 0 :(得分:3)

你可以运行这个并行。在开始时生成一个巨大的random列表,然后在你的循环中,一次生成线程(8个线程)到每个进程列表的一个块并将其最终结果添加到sum变量。或者一次生成8个列表,一次生成8个。

openmp建议的问题是“由于大量的数据依赖性,这种算法并行化很差” - 维基百科

from threading import Thread

sum = 0

def calc_distance(offset) :
    sum += distance(randoms[offset][0], randoms[offset][1]) #use whatever addressing scheme is best

threads = []
for i in xrange(8) :
    t = new Thread(target=calc_distance, args=(i))
    t.start()
    threads.append(t)

...后

for t in threads :
     t.join()

我认为如果levenshtein距离内核可用(或可编码),这种方法可以很好地移植到opencl。

这只是内存中的一个快速帖子,因此可能会有一些问题需要解决。

答案 1 :(得分:1)

您可以做的是从本网站学习一些OpenMP概念和指令:A beginner's Primer to OpenMP

您需要一个兼容OpenMP的编译器。以下是work的编译器列表。编译代码时,您需要使用-fopenmp选项。

我只在代码中添加了编译器指令#pragma omp parallel for,告诉编译器可以并行运行以下代码块。通过将while循环更改为for循环,或者通过在整个函数中应用OpenMP模式,可以看到性能的额外增益。您可以通过在这些块之前使用函数omp_set_num_threads()调整用于执行for循环的线程数来调整性能。对于你来说,一个很好的数字是8,因为你将在8核处理器上运行。

lev_edit_distance(size_t len1, const lev_byte *string1,
              size_t len2, const lev_byte *string2,
              int xcost)
{
  size_t i;
  size_t *row;  /* we only need to keep one row of costs */
  size_t *end;
  size_t half;

 // Set the number of threads the OpenMP framework will use to parallelize the for loops
 omp_set_num_threads(8);

  /* strip common prefix */
  while (len1 > 0 && len2 > 0 && *string1 == *string2) {
    len1--;
    len2--;
    string1++;
    string2++;
  }

  /* strip common suffix */
  while (len1 > 0 && len2 > 0 && string1[len1-1] == string2[len2-1]) {
    len1--;
    len2--;
  }

  /* catch trivial cases */
  if (len1 == 0)
    return len2;
  if (len2 == 0)
    return len1;

  /* make the inner cycle (i.e. string2) the longer one */
  if (len1 > len2) {
    size_t nx = len1;
    const lev_byte *sx = string1;
    len1 = len2;
    len2 = nx;
    string1 = string2;
    string2 = sx;
  }
  /* check len1 == 1 separately */
  if (len1 == 1) {
    if (xcost)
      return len2 + 1 - 2*(memchr(string2, *string1, len2) != NULL);
    else
      return len2 - (memchr(string2, *string1, len2) != NULL);
  }
  len1++;
  len2++;
  half = len1 >> 1;
  /* initalize first row */
  row = (size_t*)malloc(len2*sizeof(size_t));
  if (!row)
    return (size_t)(-1);
  end = row + len2 - 1;

  #pragma omp parallel for
  for (i = 0; i < len2 - (xcost ? 0 : half); i++)
    row[i] = i;

  /* go through the matrix and compute the costs.  yes, this is an extremely
   * obfuscated version, but also extremely memory-conservative and relatively
   * fast.  */
  if (xcost) {
   #pragma omp parallel for
   for (i = 1; i < len1; i++) {
      size_t *p = row + 1;
      const lev_byte char1 = string1[i - 1];
      const lev_byte *char2p = string2;
      size_t D = i;
      size_t x = i;
      while (p <= end) {
        if (char1 == *(char2p++))
          x = --D;
        else
          x++;
        D = *p;
        D++;
        if (x > D)
          x = D;
        *(p++) = x;
      }
    }
  }
  else {
    /* in this case we don't have to scan two corner triangles (of size len1/2)
     * in the matrix because no best path can go throught them. note this
     * breaks when len1 == len2 == 2 so the memchr() special case above is
     * necessary */
    row[0] = len1 - half - 1;
    #pragma omp parallel for
    for (i = 1; i < len1; i++) {
      size_t *p;
      const lev_byte char1 = string1[i - 1];
      const lev_byte *char2p;
      size_t D, x;
      /* skip the upper triangle */
      if (i >= len1 - half) {
        size_t offset = i - (len1 - half);
        size_t c3;

        char2p = string2 + offset;
        p = row + offset;
        c3 = *(p++) + (char1 != *(char2p++));
        x = *p;
        x++;
        D = x;
        if (x > c3)
          x = c3;
        *(p++) = x;
      }
      else {
        p = row + 1;
        char2p = string2;
        D = x = i;
      }
      /* skip the lower triangle */
      if (i <= half + 1)
        end = row + len2 + i - half - 2;
      /* main */
      while (p <= end) {
        size_t c3 = --D + (char1 != *(char2p++));
        x++;
        if (x > c3)
          x = c3;
        D = *p;
        D++;
        if (x > D)
          x = D;
        *(p++) = x;
      }
      /* lower triangle sentinel */
       if (i <= half) {
        size_t c3 = --D + (char1 != *char2p);
        x++;
        if (x > c3)
          x = c3;
        *p = x;
      }
    }
  }

  i = *end;
  free(row);
  return i;
}

您也可以对for循环中正在操作的变量执行reduction运算,以便提供简单的并行计算,如求和,乘法等。

int main()
{
    int i = 0,
        j = 0,
        sum = 0;
    char str1[30]; // Change size to fit your specifications
    char str2[30];

    #pragma omp parallel for
    for(i=0;i<16;i++)
    {
        sum = 0;
            // Could do a reduction on sum across all threads
        for(j=0;j<1000;j++)
        {
            // Calls will have to be changed
            // I don't know much Python so I'll leave that to the experts 
            str1 = bin(random.getrandbits(2**i))[2:].zfill(2**i)
            str2 = bin(random.getrandbits(2**i))[2:].zfill(2**i)
            sum += distance(str1,str2)
        }
        printf("%d %d",i,(sum/(1000*2*i)));
    }
}

答案 2 :(得分:1)

我要做什么:

1)非常小的优化:一次性分配row以避免内存管理开销。或者您可以尝试realloc(),或者您可以在静态变量中跟踪row的大小(并且还有row静态)。然而,这节省的很少,即使它的成本很低。

2)您正在尝试计算平均值。也用C进行平均计算。这应该在通话中保存一些东西。再次,小改变,但它便宜。

3)由于您对实际计算不感兴趣,但只对结果感兴趣,因此,假设您有三台PC,并且每台都是四核机器。然后在每个四个实例的程序上运行,循环次数十二次。你会在十二分之一的时间里得到十二个结果:平均那些,鲍勃是你的叔叔。

除了循环之外,选项#3根本不需要修改,您可能希望将其设置为命令行参数,以便可以在可变数量的计算机上部署程序。实际上,您可能希望输出结果及其“权重”,以便在将结果汇总时将错误发生的可能性降至最低。

for j in xrange(N):
    str1 = bin(random.getrandbits(2**i))[2:].zfill(2**i)
    str2 = bin(random.getrandbits(2**i))[2:].zfill(2**i)
    sum += distance(str1,str2)
print N,i,sum/(N*2**i)

但如果您对泛型 Levenshtein统计信息感兴趣,我不太确定仅使用0和1符号进行计算是否适合您的目的。从字符串01010101中,您可以通过翻转八个字符或删除第一个字符并在结尾添加零来获得10101010,但需要两个不同的成本。如果您拥有字母表中的所有字母,则第二种可能性变得不太可能,并且应该在平均成本方案中改变某些内容。或者我错过了什么?

答案 3 :(得分:0)

其他人在一两年前做了大量的研究,并进行了运行时测试。

他想出了this并且基本上使用了解决方案树来加快速度。