我有67000个文件,我需要读取它们并提取单词之间的相似之处,但是当我运行代码时我的笔记本电脑变得慢得多,我无法打开任何其他应用程序,然后出现内存溢出错误(即使我运行大约10 000个文件)。有没有办法在每个for循环之后清除内存,或者在所有文件上运行代码是不可能的?以下是代码:
def isAscii(s):
for c in s:
if c not in string.printable:
return False
return True
windowSize = 2
relationTable = {}
probabilities = {}
wordCount = {}
totalWordCount = 0
def sim(w1, w2):
numerator = 0
denominator = 0
if (w1 in relationTable) and (w2 in relationTable):
rtw1 = {}
rtw2 = {}
rtw1 = relationTable[w1]
rtw2 = relationTable[w2]
for word in rtw1:
rtw1_PMI = rtw1[word]['pairPMI']
denominator += rtw1_PMI
if(word in rtw2):
rtw2_PMI = rtw2[word]['pairPMI']
numerator += (rtw1_PMI + rtw2_PMI)
for word in rtw2:
rtw2_PMI = rtw2[word]['pairPMI']
denominator += rtw2_PMI
if(denominator != 0):
return float(numerator)/denominator
else:
return 0
else:
return -1
AllNotes = {}
AllNotes = os.listdir("C:/Users/nerry-san/Desktop/EECE 502/MedicalNotes")
fileStopPunctuations = open('C:/Users/nerry-san/Desktop/EECE 502/stopPunctuations.txt')
stopPunctuations = nltk.word_tokenize(fileStopPunctuations.read())
for x in range (0, 10):
fileToRead = open('C:/Users/nerry-san/Desktop/EECE 502/MedicalNotes/%s'%(AllNotes[x]))
case1 = fileToRead.read()
text = nltk.WordPunctTokenizer().tokenize(case1.lower())
final_text = []
for index in range(len(text)):
word = text[index]
if (word not in stopPunctuations):
final_text.append(word)
for index in range (len(final_text)):
w1 = final_text[index]
if(isAscii(w1)):
for index2 in range(-windowSize, windowSize+1):
if (index2 != 0):
if ( index + index2 ) in range (0, len(final_text)):
w2 = final_text[index + index2]
if(isAscii(w2)):
totalWordCount += 1
if (w1 not in wordCount):
wordCount[w1] = {}
wordCount[w1]['wCount'] = 0
try:
wordCount[w1][w2]['count'] += 1
wordCount[w1]['wCount'] += 1
except KeyError:
wordCount[w1][w2] = {'count':1}
wordCount[w1]['wCount'] += 1
for word in wordCount:
probabilities[word]={}
probabilities[word]['wordProb'] = float (wordCount[word]['wCount'])/ totalWordCount
for word in wordCount:
relationTable[word] = {}
for word2 in wordCount[word]:
if ( word2 != 'wCount'):
pairProb = float(wordCount[word][word2]['count'])/(wordCount[word]['wCount'])
relationTable[word][word2] = {}
relationTable[word][word2]['pairPMI'] = math.log(float(pairProb)/(probabilities[word]['wordProb'] * probabilities[word2]['wordProb']),2)
l = []
for word in relationTable:
l.append(word)
for index in range (0, len(l)):
word = l[index]
simValues = []
for index2 in range (0, len(l)):
word2 = l[index2]
if(word!= word2):
simVal = sim(word,word2)
if(simVal > 0):
simValues.append([word2, simVal])
simValues.sort(key= operator.itemgetter(1), reverse = True)
答案 0 :(得分:0)
每次打开文件时,请使用“with”语句。这将确保在循环结束时(或者当退出with块时)关闭文件。