这次我正在尝试Solem's blog的另一个例子。它是一个通过使用霍夫变换检测图像中的线条和圆圈的模块。 这是代码(houghlines.py):
import numpy as np
import cv2
"""
Script using OpenCV's Hough transforms for reading images of
simple dials.
"""
# load grayscale image
im = cv2.imread("house2.jpg")
gray_im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
# create version to draw on and blurred version
draw_im = cv2.cvtColor(gray_im, cv2.COLOR_GRAY2BGR)
blur = cv2.GaussianBlur(gray_im, (0,0), 5)
m,n = gray_im.shape
# Hough transform for circles
circles = cv2.HoughCircles(gray_im, cv2.cv.CV_HOUGH_GRADIENT, 2, 10, np.array([]), 20, 60, m/10)[0]
# Hough transform for lines (regular and probabilistic)
edges = cv2.Canny(blur, 20, 60)
lines = cv2.HoughLines(edges, 2, np.pi/90, 40)[0]
plines = cv2.HoughLinesP(edges, 1, np.pi/180, 20, np.array([]), 10)[0]
# draw
for c in circles[:3]:
# green for circles (only draw the 3 strongest)
cv2.circle(draw_im, (c[0],c[1]), c[2], (0,255,0), 2)
for (rho, theta) in lines[:5]:
# blue for infinite lines (only draw the 5 strongest)
x0 = np.cos(theta)*rho
y0 = np.sin(theta)*rho
pt1 = ( int(x0 + (m+n)*(-np.sin(theta))), int(y0 + (m+n)*np.cos(theta)) )
pt2 = ( int(x0 - (m+n)*(-np.sin(theta))), int(y0 - (m+n)*np.cos(theta)) )
cv2.line(draw_im, pt1, pt2, (255,0,0), 2)
for l in plines:
# red for line segments
cv2.line(draw_im, (l[0],l[1]), (l[2],l[3]), (0,0,255), 2)
cv2.imshow("circles",draw_im)
cv2.waitKey()
# save the resulting image
cv2.imwrite("res.jpg",draw_im)
当我在python中执行文件时:
execfile('houghlines.py')
出现以下错误:
File "houghlines.py", line 24, in <module>
lines = cv2.HoughLines(edges, 2, np.pi/90, 40)[0]
TypeError: 'NoneType' object has no attribute '__getitem__'
你们有任何想法如何解决它?
提前谢谢。
答案 0 :(得分:5)
有时HoughLines和HoughLinesP没有返回。我认为这意味着&#34;没有线&#34;。我真的很惊讶文档中的示例并不能解释它。也许这是一个错误。
在任何情况下,您都可以使用简单的if result != None:
停止代码失败,或者使用默认列表(HoughLinesP(... args ...) or [[]])
替换无。这不会解决您的线路未被检测到的事实,但它允许您在这种情况下执行某些操作而不是失败。
答案 1 :(得分:4)
这是因为lines = cv2.HoughLines(edges, 2, np.pi/90, 40)[0]
中的阈值,是您传递的最后一个参数。它表示最小长度被视为一条线,在您的情况下为40像素。尝试减少它。
答案 2 :(得分:0)
我也在处理这个错误。当函数cv2.HoughCircles
未检测到任何圆时,它将返回None。所以我有两种方法可以解决它:
try:
...
except Exception as e:
print 'There is no circles to be detected!'
if circles is not None:
...
else:
print 'There is no circles to be detected!'
答案 3 :(得分:0)
我已经使用以下代码克服了这一点:
lines = []
linesDetected = False
while not linesDetected:
lines = cv.HoughLinesP(edges, 1, np.pi/180, 30, minLineLength = 60, maxLineGap=300)
try:
if len(lines) !=0:
linesDetected = True
except:
linesDetected = False
答案 4 :(得分:0)
更改阈值将起作用
canny=cv2.Canny(gray,50,150,apertureSize=3)
lines=cv2.HoughLines(canny,1,numpy.pi/180,40)
打印(行)