使用python中的图像处理计算粒子

时间:2013-04-19 17:51:16

标签: python image opencv python-imaging-library

在变化的背景强度下检测粒子是否有任何好的算法? 例如,如果我有以下图像:

fluorescence

有没有办法计算小的白色颗粒,即使左下方出现明显不同的背景?

为了更清楚一点,我想标记图像并使用一种算法来计算粒子,这些算法可以发现这些粒子很重要:

labeled_particles

我使用PILcvscipynumpy等模块尝试了很多内容。 我从this very similar SO question得到了一些提示,乍看之下你可以采取一个简单的阈值:

im = mahotas.imread('particles.jpg')
T = mahotas.thresholding.otsu(im)

labeled, nr_objects = ndimage.label(im>T)
print nr_objects
pylab.imshow(labeled)

但是由于背景的变化你得到了这个: bad_threshold_image

我还尝试了其他一些想法,比如a technique I found for measuring paws,我用这种方式实现了这个想法:

import numpy as np
import scipy
import pylab
import pymorph
import mahotas
from scipy import ndimage
import cv


def detect_peaks(image):
    """
    Takes an image and detect the peaks usingthe local maximum filter.
    Returns a boolean mask of the peaks (i.e. 1 when
    the pixel's value is the neighborhood maximum, 0 otherwise)
    """

    # define an 8-connected neighborhood
    neighborhood = ndimage.morphology.generate_binary_structure(2,2)

    #apply the local maximum filter; all pixel of maximal value 
    #in their neighborhood are set to 1
    local_max = ndimage.filters.maximum_filter(image, footprint=neighborhood)==image
    #local_max is a mask that contains the peaks we are 
    #looking for, but also the background.
    #In order to isolate the peaks we must remove the background from the mask.

    #we create the mask of the background
    background = (image==0)

    #a little technicality: we must erode the background in order to 
    #successfully subtract it form local_max, otherwise a line will 
    #appear along the background border (artifact of the local maximum filter)
    eroded_background = ndimage.morphology.binary_erosion(background, structure=neighborhood, border_value=1)

    #we obtain the final mask, containing only peaks, 
    #by removing the background from the local_max mask
    detected_peaks = local_max - eroded_background

    return detected_peaks

im = mahotas.imread('particles.jpg')
imf = ndimage.gaussian_filter(im, 3)
#rmax = pymorph.regmax(imf)
detected_peaks = detect_peaks(imf)
pylab.imshow(pymorph.overlay(im, detected_peaks))
pylab.show()

但这也没有运气,显示了这个结果:

bad_result_from_detect_peaks

使用区域最大函数,我得到的图像几乎可以给出正确的粒子识别,但根据我的高斯滤波,图像中有太多或太少的粒子在错误的位置(图像的高斯滤波器为2, 3,& 4):

gaussian of 2 gaussian of 3 gaussian of 4

此外,它还需要处理与此类似的图像:

fluorescence

这是上面相同类型的图像,只是粒子密度高得多。

编辑:已解决的解决方案: 我能够使用以下代码为此问题找到一个不错的解决方案:

import cv2
import pylab
from scipy import ndimage

im = cv2.imread('particles.jpg')
pylab.figure(0)
pylab.imshow(im)

gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5,5), 0)
maxValue = 255
adaptiveMethod = cv2.ADAPTIVE_THRESH_GAUSSIAN_C#cv2.ADAPTIVE_THRESH_MEAN_C #cv2.ADAPTIVE_THRESH_GAUSSIAN_C
thresholdType = cv2.THRESH_BINARY#cv2.THRESH_BINARY #cv2.THRESH_BINARY_INV
blockSize = 5 #odd number like 3,5,7,9,11
C = -3 # constant to be subtracted
im_thresholded = cv2.adaptiveThreshold(gray, maxValue, adaptiveMethod, thresholdType, blockSize, C) 
labelarray, particle_count = ndimage.measurements.label(im_thresholded)
print particle_count
pylab.figure(1)
pylab.imshow(im_thresholded)
pylab.show()

这将显示如下图像:

particles_given (这是给定的图像)

counted_particles

(这是计算的粒子)

并计算粒子数为60。

2 个答案:

答案 0 :(得分:4)

我通过使用称为自适应对比度的技术使用调谐差阈值解决了“背景中的可变亮度”。它的工作原理是将灰度图像与其自身的模糊版本进行线性组合(在这种情况下是差异),然后对其应用阈值。

  1. 使用合适的统计运算符对图像进行卷积。
  2. 从卷积图像中减去原始图像,必要时校正强度比例/伽玛。
  3. 使用常量阈值差异图像。
  4. original paper

    我使用scipy.ndimage在浮点域中做得非常成功(比整数图像处理更好的结果),如下所示:

    original_grayscale = numpy.asarray(some_PIL_image.convert('L'), dtype=float)
    blurred_grayscale = scipy.ndimage.filters.gaussian_filter(original_grayscale, blur_parameter)
    difference_image = original_grayscale - (multiplier * blurred_grayscale);
    image_to_be_labeled = ((difference_image > threshold) * 255).astype('uint8')  # not sure if it is necessary
    
    labelarray, particle_count = scipy.ndimage.measurements.label(image_to_be_labeled)
    

    希望这会有所帮助!!

答案 1 :(得分:3)

我无法给出明确的答案,但这里有几点建议:

  1. 函数mahotas.morph.regmax可能比最大过滤器更好,因为它会删除伪最大值。也许将其与全局阈值,本地阈值(例如窗口上的平均值)或两者结合起来。

  2. 如果您有多个图像和相同的不均匀背景,那么您可以计算平均背景并对其进行标准化,或使用空图像作为背景估计。如果你有一台显微镜就是这种情况,就像我看过的每一台显微镜一样,光线不均匀。

  3. 类似的东西:

    average = average_of_many(images)
    # smooth it
    average = mahotas.gaussian_filter(average,24)
    

    现在您预处理图像,例如:

    preproc = image/average
    

    或类似的东西。