点算法之间的最短距离

时间:2009-10-21 16:57:58

标签: algorithm math computational-geometry

给定平面上的一组点,找到由这两个点中的任何两个点形成的最短线段。

我该怎么做?显而易见的方法是计算每个距离,但我需要另一种比较算法。

7 个答案:

答案 0 :(得分:31)

http://en.wikipedia.org/wiki/Closest_pair_of_points

使用递归分治法可以在O(n log n)时间内解决问题,例如:

  • 沿x坐标排序点
  • 通过垂直线x = xmid
  • 将点集分成两个大小相等的子集
  • 在左右子集中递归地解决问题。这将分别给出左侧和右侧最小距离dLmin和dRmin。
  • 找到一对点之间的最小距离dLRmin,其中一个点位于分隔垂直的左侧,第二个点位于右侧。
  • 最终答案是dLmin,dRmin和dLRmin中的最小答案。

答案 1 :(得分:27)

我不能立即想到比蛮力技术更快的替代方法(虽然必须有很多)但是你选择的算法计算每个点之间的距离。如果您需要比较距离,只需比较距离的正方形,以避免昂贵且完全冗余的平方根。

答案 2 :(得分:6)

一种可能性是按X坐标对点进行排序(或者Y - 并不重要,只是一致)。然后,您可以使用它来消除与许多其他点的比较。当你看到点[i]和点[j]之间的距离时,如果单独的X距离大于你当前的最短距离,那么点[j + 1] ...点[N]可以被消除为好吧(假设是i<j - 如果是j<i,则点[0] ...点[i]被淘汰了。

如果您的点以极坐标开始,您可以使用相同的变体 - 按原点的距离排序,如果与原点的距离差异大于当前的最短距离,则可以消除那一点,以及与您目前正在考虑的原点相比距原点更近(或更接近原点)的所有其他原因。

答案 3 :(得分:5)

您可以从Delaunay triangulation中提取线性时间中最接近的一对,相反地从Voronoi diagram提取。

答案 4 :(得分:3)

此问题有一个标准算法,您可以在这里找到它: http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html

这是我对这个算法的实现,抱歉没有评论:

    static long distSq(Point a, Point b) {
    return ((long) (a.x - b.x) * (long) (a.x - b.x) + (long) (a.y - b.y) * (long) (a.y - b.y));
}

static long ccw(Point p1, Point p2, Point p3) {
    return (long) (p2.x - p1.x) * (long) (p3.y - p1.y) - (long) (p2.y - p1.y) * (long) (p3.x - p1.x);
}

static List<Point> convexHull(List<Point> P) {

    if (P.size() < 3) {
        //WTF
        return null;
    }

    int k = 0;

    for (int i = 0; i < P.size(); i++) {
        if (P.get(i).y < P.get(k).y || (P.get(i).y == P.get(k).y && P.get(i).x < P.get(k).x)) {
            k = i;
        }
    }

    Collections.swap(P, k, P.size() - 1);

    final Point o = P.get(P.size() - 1);
    P.remove(P.size() - 1);


    Collections.sort(P, new Comparator() {

        public int compare(Object o1, Object o2) {
            Point a = (Point) o1;
            Point b = (Point) o2;

            long t1 = (long) (a.y - o.y) * (long) (b.x - o.x) - (long) (a.x - o.x) * (long) (b.y - o.y);

            if (t1 == 0) {
                long tt = distSq(o, a);
                tt -= distSq(o, b);
                if (tt > 0) {
                    return 1;
                } else if (tt < 0) {
                    return -1;
                }
                return 0;

            }
            if (t1 < 0) {
                return -1;
            }
            return 1;

        }
    });



    List<Point> hull = new ArrayList<Point>();
    hull.add(o);
    hull.add(P.get(0));


    for (int i = 1; i < P.size(); i++) {
        while (hull.size() >= 2 &&
                ccw(hull.get(hull.size() - 2), hull.get(hull.size() - 1), P.get(i)) <= 0) {
            hull.remove(hull.size() - 1);
        }
        hull.add(P.get(i));
    }

    return hull;
}

static long nearestPoints(List<Point> P, int l, int r) {


    if (r - l == P.size()) {

        Collections.sort(P, new Comparator() {

            public int compare(Object o1, Object o2) {
                int t = ((Point) o1).x - ((Point) o2).x;
                if (t == 0) {
                    return ((Point) o1).y - ((Point) o2).y;
                }
                return t;
            }
        });
    }

    if (r - l <= 100) {
        long ret = distSq(P.get(l), P.get(l + 1));
        for (int i = l; i < r; i++) {
            for (int j = i + 1; j < r; j++) {
                ret = Math.min(ret, distSq(P.get(i), P.get(j)));
            }
        }
        return ret;

    }

    int c = (l + r) / 2;
    long lD = nearestPoints(P, l, c);
    long lR = nearestPoints(P, c + 1, r);
    long ret = Math.min(lD, lR);
    Set<Point> set = new TreeSet<Point>(new Comparator<Point>() {

        public int compare(Point o1, Point o2) {
            int t = o1.y - o2.y;
            if (t == 0) {
                return o1.x - o2.x;
            }
            return t;
        }
    });
    for (int i = l; i < r; i++) {
        set.add(P.get(i));
    }

    int x = P.get(c).x;

    double theta = Math.sqrt(ret);

    Point[] Q = set.toArray(new Point[0]);
    Point[] T = new Point[Q.length];
    int pos = 0;
    for (int i = 0; i < Q.length; i++) {
        if (Q[i].x - x + 1 > theta) {
            continue;
        }
        T[pos++] = Q[i];
    }

    for (int i = 0; i < pos; i++) {
        for (int j = 1; j < 7 && i + j < pos; j++) {
            ret = Math.min(ret, distSq(T[i], T[j + i]));
        }
    }
    return ret;
}

答案 5 :(得分:1)

根据您的问题,目前尚不清楚您是在寻找细分的距离还是细分本身。假设您正在寻找距离(一段简单的修改,一旦您知道哪个是距离最小的两个点),给定5个点,编号从1到5,您需要

compare 1 with 2,3,4,5, then 
compare 2, with 3,4,5, then 
compare 3 with 4,5, then 
compare 4 with 5.

如果我没有错,考虑到距离的可交换性,你不需要进行其他比较。 在python中,可能听起来像是

import numpy as np
def find_min_distance_of_a_cloud(cloud):
        """
        Given a cloud of points in the n-dim space, provides the minimal distance.
        :param cloud: list of nX1-d vectors, as ndarray.
        :return:
        """
        dist_min = None
        for i, p_i in enumerate(cloud[:-1]):
            new_dist_min = np.min([np.linalg.norm(p_i - p_j) for p_j in cloud[(i + 1):]])
            if dist_min is None or dist_min > new_dist_min:
                dist_min = new_dist_min

        return dist_min

可以使用以下代码测试:

from nose.tools import assert_equal

def test_find_min_distance_of_a_cloud_1pt():
    cloud = [np.array((1, 1, 1)), np.array((0, 0, 0))]
    min_out = find_min_distance_of_a_cloud(cloud)
    assert_equal(min_out, np.sqrt(3))


def test_find_min_distance_of_a_cloud_5pt():
    cloud = [np.array((0, 0, 0)),
             np.array((1, 1, 0)),
             np.array((2, 1, 4)),
             np.array((3, 4, 4)),
             np.array((5, 3, 4))]
    min_out = find_min_distance_of_a_cloud(cloud)
    assert_equal(min_out, np.sqrt(2))

如果两个以上的点可以具有相同的最小距离,并且您正在寻找段,则需要再次修改建议的代码,输出将是距离最小的点列表(或几个点) )。希望它有所帮助!

答案 6 :(得分:0)

这是一个代码示例,演示如何实现分而治之算法。为了使算法起作用,点x值必须唯一。该算法的非显而易见部分是必须同时沿x和y轴进行排序。否则,您将无法找到线性时间内跨接缝的最小距离。

from collections import namedtuple
from itertools import combinations
from math import sqrt

IxPoint = namedtuple('IxPoint', ['x', 'y', 'i'])
ClosestPair = namedtuple('ClosestPair', ['distance', 'i', 'j'])

def check_distance(cp, p1, p2):
    xd = p1.x - p2.x
    yd = p1.y - p2.y
    dist = sqrt(xd * xd + yd * yd)
    if dist < cp.distance:
        return ClosestPair(dist, p1.i, p2.i)
    return cp

def closest_helper(cp, xs, ys):
    n = len(xs)
    if n <= 3:
        for p1, p2 in combinations(xs, 2):
            cp = check_distance(cp, p1, p2)
        return cp

    # Divide
    mid = n // 2
    mid_x = xs[mid].x
    xs_left = xs[:mid]
    xs_right = xs[mid:]
    ys_left = [p for p in ys if p.x < mid_x]
    ys_right = [p for p in ys if p.x >= mid_x]

    # Conquer
    cp_left = closest_helper(cp, xs_left, ys_left)
    cp_right = closest_helper(cp, xs_right, ys_right)
    if cp_left.distance < cp_right.distance:
        cp = cp_left
    else:
        cp = cp_right

    ys_strip = [p for p in ys if abs(p.x - mid_x) < cp.distance]
    n_strip = len(ys_strip)
    for i in range(n_strip):
        for j in range(i + 1, n_strip):
            p1, p2 = ys_strip[j], ys_strip[i]
            if not p1.y - p2.y < cp.distance:
                break
            cp = check_distance(cp, p1, p2)
    return cp

def closest_pair(points):
    points = [IxPoint(p[0], p[1], i)
              for (i, p) in enumerate(points)]
    xs = sorted(points, key = lambda p: p.x)
    xs = [IxPoint(p.x + i * 1e-8, p.y, p.i)
          for (i, p) in enumerate(xs)]
    ys = sorted(xs, key = lambda p: p.y)
    cp = ClosestPair(float('inf'), -1, -1)
    return closest_helper(cp, xs, ys)