我已经为整数实现了跳过列表。在测试方法插入时,我在带有计数器j的for循环中插入1到1000000之间的自然数。我也在使用秒表。 附录:在真实程序中,值是双倍的,因为我使用带有值的标记 double.PositiveInfinity in double.NegativeInfinity。 (但那应该不是问题) 伪代码:
MyList = new SkipList();
stopwatch.start();
t1 = stopwatch.Elapsed.TotalMilliseconds;
for(int j = 0; j<1000000; j++){
steps = MyList.insert(j);
if(j%500==0){
t2= stopwatch.Elapsed.TotalMilliseconds -t1;
write j,t2 in a file1;
write j,steps in a file2;
t1 = t2;
}
}
当我绘制图形时间/节点数时,它是线性的,但图形步骤/节点是预期的对数。 (步骤是方法插入中的循环周期数(〜操作))。
方法insert会创建额外的节点并设置一些poiters。节点以下列方式实现:
class Node
{
public Node right;//his right neighbour - maybe "null"
public Node down;//his bottom neighbour -maybe null
public int? value;//value
public int depth;//level where node is present: 0, 1, 2 ...
public Node(int i,Node rightt,Node downn,int depthh) {
//constructor for node with two neighbours.
value = i;
right = rightt;
down = downn;
depth = depthh;
}
//there are some other contructors (for null Node etc.)
}
class SkipList
{
public Node end;//upper right node
public Node start;//upper left node
public int depth;//depth of SkipList
//there are left (-inf) and right sentinels (inf) in the SkipList.
}
跳过列表由节点组成。
Insert在SkipList类中定义,并按以下方式工作:
public int Insert(int value2, int depth2)
{
//returns number of steps
//depth2 is calculated like (int)(-Math.Log(0<=random double<1 ,2))
//and works as expected - probability P(depth = k) = Math.Pow(0.5,k)
//lsit of nodes, which will get a new right neighbour
List<Node> list = new List<Node>();
Node nod = start;
int steps = 0;
while (true) {
if (nod.right.value >= value2)
{
//must be added to our list
lsit.Add(nod);
if (nod.down != null)
nod = nod.down;
else
break;
}
else {
nod = nod.right;
}
steps++;
}
//depth (of skipList) is maybe < depth2, so we must create
//k = 2*(depth2-depth) new edge nodes and fix right pointers of left sentinels
List<Node> newnodes = new List<Node>();
for (int jj = 0; jj < depth2 - depth;jj++ )
{
steps++;
//new sentinels
Node end2 = new Node(double.PositiveInfinity, end,depth+jj+1);
Node start2 = new Vozlisce(double.NegativeInfinity, end2,
start,depth+jj+1);
start = start2;
end = end2;
newnodes.Add(start2);
}
//fix right pointers of nodes in the List list (from the beginning)
Node x = new Node(value,list[list.Count-1].right,0);
list[list.Count-1].right=x;
int j =1;
while(j<=Math.Min(depth2,depth)){
steps++;
//create new nodes with value value
x = new Node(value,lsit[list.Count -(j+1)].right,x,j);
list[list.Count-(j+1)].right = x;
j++;
}
//if there are some new edge sentinels, we must fix their right neighbours
// add the last depth2-depth nodes
for(int tj=0;tj<depth2-depth;tj++){
steps++;
x = new Node(value,newnodes[tj].right,x,depth+tj+1);
newnodes[tj].right = x;
}
depth = Math.Max(depth, depth2);
return steps;
}
我还实现了跳过列表的一个版本,其中节点是块并且具有n = node.depth 右邻居,存储在数组中,但图时间/数字。节点仍然是线性的(节点的步数/数是对数的)。
答案 0 :(得分:0)
^
是“xor”;
10 : 1010
6 : 0110
---------
^ : 1100 = 12
如果你从0循环到11,那么是 - 它看起来很线性 - 你不会注意到那个大小的任何退化。您可能需要Math.Pow
而不是^
,但硬编码1000000
会更简单。