我正在进行图像处理。我想匹配2D功能,我在SURF,SIFT,ORB上做了很多测试。
如何在OpenCV中对SURF / SIFT / ORB应用RANSAC?
答案 0 :(得分:23)
OpenCV具有函数cv::findHomography
,它可以选择使用RANSAC来查找与两个图像相关的单应矩阵。您可以在操作here中查看此功能的示例。
具体而言,您感兴趣的代码部分是:
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
然后,您可以使用函数cv::perspectiveTransform
根据单应矩阵扭曲图像。
除cv::findHomography
以外的CV_RANSAC
的其他选项是使用每个点的0
和使用最少中值方法的CV_LMEDS
。有关详细信息,请参阅OpenCV摄像机校准文档here。
答案 1 :(得分:2)
这是在获得的 SIFT / SURF 关键点上使用 ransac
和 skimage
或 ProjectiveTransform
(即单应性)模型应用 AffineTransform
的 Python 实现。此实现首先对获得的关键点进行 Lowe's ratio 测试,然后对来自 Lowe's ratio 测试的过滤后的关键点进行ransac。
import cv2
from skimage.measure import ransac
from skimage.transform import ProjectiveTransform, AffineTransform
import numpy as np
def siftMatching(img1, img2):
# Input : image1 and image2 in opencv format
# Output : corresponding keypoints for source and target images
# Output Format : Numpy matrix of shape: [No. of Correspondences X 2]
surf = cv2.xfeatures2d.SURF_create(100)
# surf = cv2.xfeatures2d.SIFT_create()
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# Lowe's Ratio test
good = []
for m, n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1, 2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1, 2)
# Ransac
model, inliers = ransac(
(src_pts, dst_pts),
AffineTransform, min_samples=4,
residual_threshold=8, max_trials=10000
)
n_inliers = np.sum(inliers)
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in src_pts[inliers]]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in dst_pts[inliers]]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None)
cv2.imshow('Matches', image3)
cv2.waitKey(0)
src_pts = np.float32([ inlier_keypoints_left[m.queryIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
dst_pts = np.float32([ inlier_keypoints_right[m.trainIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
return src_pts, dst_pts