为以下的cryptarithm / alphametic难题找到一个强力算法

时间:2013-04-14 09:03:34

标签: c math cryptarithmetic-puzzle

我正在尝试用C编写一个程序来解决以下cryptarithm

  

一个 + 一个 = 两个

     

是素数

     

是一个完美的正方形

即,我需要找到一个两个七个九个的数字值其中每个字母(o,n,e,t,w,s,v,i)都被赋予一个数值,而完整的数字也符合上述所有条件。

我正在考虑为每个单词创建一个int数组,然后1)检查每个单词是否符合条件(例如,是“七”的素数)然后2)检查每个单词是否在数组与其他单词的值一致,其他单词也可以满足各自的条件。

我无法真正看到这个工作,因为我必须在每次迭代中不断将int数组转换为单个int然后我不确定如何同时匹配数组中的每个元素与其他单词

也许知道每个单词必须为真的MIN和MAX数值范围会有用吗?

有什么想法吗?

3 个答案:

答案 0 :(得分:5)

对于蛮力(ish)方法,我从素数seven开始,并使用Sieve of Eratosthenes得到所有素数高达99999.你可以丢弃所有答案第2和第4位不一样。之后,您可以转到方格nine,因为其中三个数字由素数seven确定。这应该很好地缩小了可能性,然后你可以使用@pmg的答案来完成它: - )。

更新:以下C#程序似乎是这样做的

bool[] poss_for_seven = new bool[100000];       // this will hold the possibilities for `seven`
for (int seven = 0; seven < poss_for_seven.Length; seven++)
    poss_for_seven[seven] = (seven > 9999);     // `seven` must have 5 digits
// Sieve of Eratosthenes to make `seven` prime
for (int seven = 2; seven < poss_for_seven.Length; seven++) {
    for (int j = 2 * seven; j < poss_for_seven.Length; j += seven) {
        poss_for_seven[j] = false;
    }
}
// look through the array poss_for_seven[], considering each possibility in turn
for (int seven = 10000; seven < poss_for_seven.Length; seven++) {
    if (poss_for_seven[seven]) {
        int second_digit = ((seven / 10) % 10);
        int fourth_digit = ((seven / 1000) % 10);
        if (second_digit == fourth_digit) {
            int e = second_digit;
            int n = (seven % 10);   // NB: `n` can't be zero because otherwise `seven` wouldn't be prime
            for (int i = 0; i < 10; i++) {
                int nine = n * 1000 + i * 100 + n * 10 + e;
                int poss_sqrt = (int)Math.Floor(Math.Sqrt(nine) + 0.1); // 0.1 in case of of rounding error
                if (poss_sqrt * poss_sqrt == nine) {
                    int o = ((2 * e) % 10); // since 2 * `one` = `two`, we now know `o`
                    int one = o * 100 + n * 10 + e;
                    int two = 2 * one;
                    int t = ((two / 100) % 10);
                    int w = ((two / 10) % 10);
                    // turns out that `one`=236, `two`=472, `nine` = 3136.
                    // look for solutions where `s` != `v` with `s` and `v' different from `o`, `n`, `e`,`t`, `w` and `i`
                    int s = ((seven / 10000) % 10);
                    int v = ((seven / 100) % 10);
                    if (s != v && s != o && s != n && s != e && s != t && s != w && s != i && v != o && v != n && v != e && v != t && v != w && v != i) {
                        System.Diagnostics.Trace.WriteLine(seven + "," + nine + "," + one + "," + two);
                    }
                }
            }
        }
    }
}

似乎nine始终等于3136,因此one = 236且two = 472.但是,seven有21种可能性。如果添加约束,没有两个数字可以采用相同的值(这是上面的C#代码所做的),那么它只减少到一种可能性(虽然我的代码中的错误意味着这个答案最初有3种可能性):

seven,nine,one,two
56963,3136,236,472

答案 1 :(得分:3)

我刚刚找到时间来构建一个c程序来解决你的密码问题。 我认为在开始强力编程之前,在数学上解决问题将大大提高输出速度。

一些数学(数论): 由于ONE + ONE = TWO,因此不能超过4,因为ONE + ONE会产生4位数。也不能为0.两个以O结尾并且是偶数,因为它是2 * ONE。 将这3个滤波器应用于O,可能的值保持为O = {2,4} 因此,E可以是{1,2,6,7},因为(E + E)模数10必须= O.更具体地说,O = 2表示E = {1,6},O = 4表示E = {2, 7} 现在让我们过滤N.鉴于SEVEN是素数,N必须是奇数。 N也不能为5,因为以5结尾的所有内容都可被5整除。因此N = {1,3,7,9}

现在我们已经减少了对于大多数字符(O,E,N)的可能性,我们已经准备好用我们所有的残暴行为来打击这个密码,迭代次数大大减少。

继承C代码:

#include <stdio.h>
#include <math.h>

#define O 0
#define N 1
#define E 2
#define T 3
#define W 4
#define S 5
#define V 6
#define I 7

bool isPerfectSquare(int number);
bool isPrime(int number);
void printSolutions(int countSolutions);
int filterNoRepeat(int unfilteredCount);

int solutions[1000][8]; // solution holder
int possibilitiesO[2] = {2,4}; 
int possibilitiesN[4] = {1,3,7,9};
int possibilitiesE[4] = {1,6,2,7};

void main() {
    int countSolutions = 0;
    int numberOne;
    // iterate to fill up the solutions array by: one + one = two
    for(int o=0;o<2;o++) {
        for(int n=0;n<4;n++) {
            for(int e=2*o;e<2*o+2;e++) { // following code is iterated 2*4*2 = 16 times
                numberOne = 100*possibilitiesO[o] + 10*possibilitiesN[n] + possibilitiesE[e];
                int w = ((2*numberOne)/10)%10;
                int t = ((2*numberOne)/100)%10;
                // check if NINE is a perfect square
                for(int i=0;i<=9;i++) { // i can be anything ----- 10 iterations
                    int numberNine = 1000*possibilitiesN[n] + 100*i + 10*possibilitiesN[n] + possibilitiesE[e];
                    if(isPerfectSquare(numberNine)) {
                        // check if SEVEN is prime
                        for(int s=1;s<=9;s++) { // s cant be 0 ------ 9 iterations
                            for(int v=0;v<=9;v++) { // v  can be anything other than s ------- 10 iterations
                                if(v==s) continue;
                                int numberSeven = 10000*s + 1000*possibilitiesE[e] + 100*v + 10*possibilitiesE[e] + possibilitiesN[n];
                                if(isPrime(numberSeven)) { // store solution
                                    solutions[countSolutions][O] = possibilitiesO[o];
                                    solutions[countSolutions][N] = possibilitiesN[n];
                                    solutions[countSolutions][E] = possibilitiesE[e];
                                    solutions[countSolutions][T] = t;
                                    solutions[countSolutions][W] = w;
                                    solutions[countSolutions][S] = s;
                                    solutions[countSolutions][V] = v;
                                    solutions[countSolutions][I] = i;
                                    countSolutions++;
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    // 16 * 9 * 10 * 10 = 14400 iterations in the WORST scenario, conditions introduced reduce MOST of these iterations to 1 if() line
    // iterations consumed by isPrime() function are not taken in count in the aproximation above.
    // filter solutions so that no two letter have the same digit
    countSolutions = filterNoRepeat(countSolutions);
    printSolutions(countSolutions); // voila!
}

bool isPerfectSquare(int number) { // check if given number is a perfect square
    double root = sqrt((double)number);
    if(root==floor(root)) return true;
    else return false;
}

bool isPrime(int number) { // simple algoritm to determine if given number is prime, check interval from sqrt(number) to number/2 with a step of +2
    int startValue = sqrt((double)number);
    if(startValue%2==0) startValue--; // make it odd
    for(int k=startValue;k<number/2;k+=2) {
        if(number%k==0) return false;
    }
    return true;
}

void printSolutions(int countSolutions) {
    for(int k=0;k<countSolutions;k++) {
        int one = 100*solutions[k][O] + 10*solutions[k][N] + solutions[k][E];
        int two = 100*solutions[k][T] + 10*solutions[k][W] + solutions[k][O];
        int seven = 10000*solutions[k][S] + 1000*solutions[k][E] + 100*solutions[k][V] + 10*solutions[k][E] + solutions[k][N];
        int nine = 1000*solutions[k][N] + 100*solutions[k][I] + 10*solutions[k][N] + solutions[k][E];
        printf("ONE: %d, TWO: %d, SEVEN: %d, NINE %d\n",one,two,seven,nine);
    }
}

int filterNoRepeat(int unfilteredCount) {
    int nrSol = 0;
    for(int k=0;k<unfilteredCount;k++) {
        bool isValid = true;
        for(int i=0;i<7;i++) { // if two letters match, solution is not valid
            for(int j=i+1;j<8;j++) {
                if(solutions[k][i]==solutions[k][j]) {
                    isValid = false;
                    break;
                }
            }
            if(!isValid) break;
        }
        if(isValid) { // store solution
            for(int i=0;i<8;i++) {
                solutions[nrSol][i] = solutions[k][i];
            }
            nrSol++;
        }
    }
    return nrSol;
}

如果您仍然对此感兴趣,可以亲自尝试代码:P。结果是一个单一的解决方案:ONE:236,TWO:472,SEVEN:56963,NINE:3136 这个解决方案与Stochastically的解决方案相同,确认了我认为的两种算法的正确性:)。 感谢您提供这个不错的密码并祝您度过愉快的一天!

答案 2 :(得分:2)

蛮力FTW!

#define ONE ((o*100) + (n*10) + e)
#define TWO ((t*100) + (w*10) + o)
#define SEVEN ((s*10000) + (e*1010) + (v*100) + n)
#define NINE ((n*1010) + (i*100) + e)

for (o = 1; o < 10; o++) {                /* 1st digit cannot be zero (one) */
  for (n = 1; n < 10; n++) {              /* 1st digit cannot be zero (nine) */
    if (n == o) continue;
    for (e = 0; n < 10; n++) {
      if (e == n) continue;
      if (e == o) continue;
              /* ... */
                      if (ONE + ONE == TWO) /* whatever */;
              /* ... */
    }
  }
}