我有一个python脚本,我从两个单独的文本文件中导入三角形元素的坐标和元素定义。
坐标文件如下所示:
id,x,y,
1, 0, 0
2, 0, 1
3, 0, 2
4, 1, 0
5, 1, 1
6, 1, 2
7, 2, 0
8, 2, 1
9, 2, 2
元素文件如下所示:
id, n1, n2, n3
1, 1, 2, 4
2, 1, 2, 5
3, 2, 3, 5
4, 3, 5, 6
5, 5, 6, 8
6, 6, 8, 9
7, 5, 7, 8
8, 4, 5, 7
在脚本中,当三角形元素的两条边位于同一位置时,我定义一个新元素(矩形)。我首先为每个三角形元素定义唯一的节点(因此元素不再共享相同的节点)然后我通过角落中的四个节点定义一个新元素。 见下图
这很好用,但是新定义的元素的厚度为零。而且我确实希望它们具有一种物理厚度。因此,我想调整三角形元素节点的坐标,并将它们稍微移动到元素的重心位置。
如何找到三角形单元的重心,然后在元素的重心方向上更改水平值为0.001,垂直距离为0.001的节点坐标?
我目前拥有的脚本如下:
#!/usr/bin/env python
open("D://Documents//SkyDrive//afstuderen//99 EEM - Abaqus 6.11.2//scripting//_COORDINATEN.txt", "r")
import csv
import itertools
with open("_COORDINATEN.txt") as file:
data = csv.reader(file)
next(data)
coords = []
coords = ([[float(x) for x in line[1:]] for line in data])
open("D://Documents//SkyDrive//afstuderen//99 EEM - Abaqus 6.11.2//scripting//_ELEMENTEN.txt", "r")
import csv
import itertools
with open("_ELEMENTEN.txt") as file:
data2 = csv.reader(file)
next(data2)
elems = []
elems = ([[int(x)-1 for x in line[1:]] for line in data2])
#Flip the original elements if required
for i,elem in enumerate(elems):
ecoords = [coords[e] for e in elem]
a = [x2-x1 for x1,x2 in zip(ecoords[0],ecoords[1])]
b = [x2-x1 for x1,x2 in zip(ecoords[1],ecoords[2])]
n = a[0]*b[1]-a[1]*b[0]
if n < 0:
elems[i] = [ elem[0], elem[2], elem[1] ]
#bewerking elementen
newcoords = []
newelems = []
for elem in elems:
ecoords = [coords[e] for e in elem]
newelem = range( len(newcoords), len(newcoords)+len(ecoords) )
newcoords += ecoords
newelems.append( newelem )
cohelems = []
for e,elem in enumerate(elems):
for edge in [[0,1],[1,2],[2,0]]:
eedge = [elem[i] for i in edge]
for e2,elem2 in enumerate(elems[e+1:]):
e2 += e+1
for edge2 in [[0,1],[1,2],[2,0]]:
eedge2 = [elem2[i] for i in edge2]
if all([i in eedge2 for i in eedge]):
newedge = [newelems[e][i] for i in edge ]
newedge += [newelems[e2][i] for i in edge2]
cohelems.append( newedge[-1::-1] )
答案 0 :(得分:1)
我不会尝试使其与您的变量名完全一致。相反,我将举例说明如何进行你想要的收缩。你应该能够将它应用到你自己的东西上。我正在使用Michael Mauderer链接的页面中的一个公式。
问题只是矢量代数。如果您不打算一般使用矢量类来表示点,那么至少有助于定义一些矢量操作:
def add_vectors(*points):
new_x = 0.0
new_y = 0.0
for point in points:
new_x += point[0]
new_y += point[1]
return [new_x, new_y]
def subtract_vectors(a, b):
new_x = a[0] - b[0]
new_y = a[1] - b[1]
return [new_x, new_y]
def mul_by_scalar(vector, scalar):
new_x = vector[0] * scalar
new_y = vector[1] * scalar
return [new_x, new_y]
通过这些,其余部分变得更容易:
triangle = [[0,0], [1,0], [1,1]]
# finding the center of mass:
# CM = (1/3) * (a + b + c)
# CM: position vector to the center of mass
# a, b, c: position vectors to the corners
CM = mul_by_scalar(add_vectors(*triangle), 1.0/3)
# For every point of the triangle, find a vector that points towards its CM.
# Scale the vectors to 10% (in this instance).
point_to_CM_vectors = []
for point in triangle:
point_to_CM_vectors.append(subtract_vectors(CM, point))
# Make a new triangle, contracted by 10%.
new_triangle = []
for point, motion in zip(triangle, point_to_CM_vectors):
new_triangle.append(add_vectors(point, mul_by_scalar(motion, 0.10)))
您可以非常轻松地了解如何内联add_vectors
,subtract_vectors
和mul_by_scalar
的功能来“手动”执行操作,但您将不断重复自己代码会令人困惑。