实现LRU缓存的最佳方法

时间:2013-04-11 14:49:46

标签: java multithreading caching collections lru

我想创建一个有效的LRU缓存实现。我发现最方便的方法是使用LinkedHashMap但不幸的是,如果很多线程使用缓存,它会很慢。我的实现在这里:

/**
 * Class provides API for FixedSizeCache.
 * Its inheritors represent classes         
 * with concrete strategies     
 * for choosing elements to delete
 * in case of cache overflow. All inheritors
 * must implement {@link #getSize(K, V)}. 
 */
public abstract class FixedSizeCache <K, V> implements ICache <K, V> {
    /**
     * Current cache size.
     */
    private int currentSize;


    /**
     *  Maximum allowable cache size.
     */
    private int maxSize;


    /**
     * Number of {@link #get(K)} queries for which appropriate {@code value} was found.
     */
    private int keysFound;


    /**
     * Number of {@link #get(K)} queries for which appropriate {@code value} was not found.
     */
    private int keysMissed;


    /** 
     * Number {@code key-value} associations that were deleted from cache
     * because of cash overflow.
     */
    private int erasedCount; 


    /**
     * Basic data structure LinkedHashMap provides
     * convenient way for designing both types of cache:
     * LRU and FIFO. Depending on its constructor parameters
     * it can represent either of FIFO or LRU HashMap.
     */
    private LinkedHashMap <K, V> entries;


    /** 
     * If {@code type} variable equals {@code true}
     * then LinkedHashMap will represent LRU HashMap.
     * And it will represent FIFO HashMap otherwise.
     */ 
    public FixedSizeCache(int maxSize, boolean type) {

        if (maxSize <= 0) {
            throw new IllegalArgumentException("int maxSize parameter must be greater than 0");
        }

        this.maxSize = maxSize;
        this.entries = new LinkedHashMap<K, V> (0, 0.75f, type);
    }


    /** 
     * Method deletes {@code key-value} associations 
     * until current cache size {@link #currentSize} will become 
     * less than or equal to maximum allowable
     * cache size {@link #maxSize}
     */
    private void relaxSize()  {

        while (currentSize > maxSize) {

             // The strategy for choosing entry with the lowest precedence
             // depends on {@code type} variable that was used to create  {@link #entries} variable. 
             // If it was created with constructor LinkedHashMap(int size,double loadfactor, boolean type)
             // with {@code type} equaled to {@code true} then variable {@link #entries} represents
             // LRU LinkedHashMap and iterator of its entrySet will return elements in order
             // from least recently used to the most recently used.
             // Otherwise, if {@code type} equaled to {@code false} then {@link #entries} represents
             // FIFO LinkedHashMap and iterator will return its entrySet elements in FIFO order -
             // from oldest in the cache to the most recently added.

            Map.Entry <K, V> entryToDelete = entries.entrySet().iterator().next();

            if (entryToDelete == null) {
                throw new IllegalStateException(" Implemented method int getSize(K key, V value) " +
                        " returns different results for the same arguments.");  
            }

            entries.remove(entryToDelete.getKey());
            currentSize -= getAssociationSize(entryToDelete.getKey(), entryToDelete.getValue());
            erasedCount++;
        }

        if (currentSize < 0) {
            throw new IllegalStateException(" Implemented method int getSize(K key, V value) " +
                    " returns different results for the same arguments.");
        }
    }


    /** 
     * All inheritors must implement this method
     * which evaluates the weight of key-value association.
     * Sum of weights of all key-value association in the cache
     * equals to {@link #currentSize}.  
     * But developer must ensure that
     * implementation will satisfy two conditions:
     * <br>1) method always returns non negative integers;
     * <br>2) for every two pairs {@code key-value} and {@code key_1-value_1}
     * if {@code key.equals(key_1)} and {@code value.equals(value_1)} then 
     * {@code getSize(key, value)==getSize(key_1, value_1)};
     * <br> Otherwise cache can work incorrectly.
     */
    protected abstract int getSize(K key, V value);


    /** 
     * Helps to detect if the implementation of {@link #getSize(K, V)} method
     * can return negative values. 
     */
    private int getAssociationSize(K key, V value)  {

        int entrySize = getSize(key, value);

        if (entrySize < 0 ) {
            throw new IllegalStateException("int getSize(K key, V value) method implementation is invalid. It returned negative value.");
        }

        return entrySize;
    }


   /**
    * Returns the {@code value} corresponding to {@code key} or
    * {@code null} if  {@code key} is not present in the cache. 
    * Increases {@link #keysFound} if finds a corresponding {@code value}
    * or increases {@link #keysMissed} otherwise. 
    */
    public synchronized final V get(K key)  {

        if (key == null) {
            throw new NullPointerException("K key is null");
        }

        V value = entries.get(key);
        if (value != null) {
            keysFound++;
            return value;
        }

        keysMissed++;
        return value;
    }


    /** 
     * Removes the {@code key-value} association, if any, with the
    *  given {@code key}; returns the {@code value} with which it
    *  was associated, or {@code null}.
    */
    public synchronized final V remove(K key)  {

        if (key == null) {
            throw new NullPointerException("K key is null");
        }

        V value = entries.remove(key);

        // if appropriate value was present in the cache than decrease
        // current size of cache

        if (value != null) {
            currentSize -= getAssociationSize(key, value);
        }

        return value;
    }


   /**
    * Adds or replaces a {@code key-value} association.
    * Returns the old {@code value} if the
    * {@code key} was present; otherwise returns {@code null}.
    * If after insertion of a {@code key-value} association 
    * to cache its size becomes greater than
    * maximum allowable cache size then it calls {@link #relaxSize()} method which
    * releases needed free space. 
    */
    public synchronized final V put(K key, V value)  {

        if (key == null || value == null) {
            throw new NullPointerException("K key is null or V value is null");
        }

        currentSize += getAssociationSize(key, value);      
        value = entries.put(key, value);

        // if key was not present then decrease cache size

        if (value != null) {
            currentSize -= getAssociationSize(key, value);
        }

        // if cache size with new entry is greater
        // than maximum allowable cache size
        // then get some free space

        if (currentSize > maxSize) {
            relaxSize();
        }

        return value;
    }


    /**
     * Returns current size of cache. 
     */
    public synchronized int currentSize() {
        return currentSize;
    }


    /** 
     * Returns maximum allowable cache size. 
     */ 
    public synchronized int maxSize() {
        return maxSize;
    }


    /** 
     * Returns number of {@code key-value} associations that were deleted
     * because of cache overflow.   
     */
    public synchronized int erasedCount() {
        return erasedCount;
    }


    /** 
     * Number of {@link #get(K)} queries for which appropriate {@code value} was found.
     */
    public synchronized int keysFoundCount() {
        return keysFound;
    }


    /** 
     * Number of {@link #get(K)} queries for which appropriate {@code value} was not found.
     */
    public synchronized int keysMissedCount() {
        return keysMissed;
    }


    /**
     * Removes all {@code key-value} associations
     * from the cache. And turns {@link #currentSize},
     * {@link #keysFound}, {@link #keysMissed} to {@code zero}.  
     */
    public synchronized void clear() {
        entries.clear();
        currentSize = 0;
        keysMissed = 0;
        keysFound = 0;
        erasedCount = 0;
    }


    /**
     * Returns a copy of {@link #entries}
     * that has the same content.
     */
    public synchronized LinkedHashMap<K, V> getCopy() {
        return new LinkedHashMap<K, V> (entries);
    }
}

这个实现很慢(因为同步)如果我们有很多线程试图调用let say get()方法。有没有更好的办法?

5 个答案:

答案 0 :(得分:5)

我不知道这是否有用,但是如果您可以用ConcurrentHashMap替换LinkedHashMap,那么您将提高吞吐量 - ConcurrentHashMap使用分片来允许多个同时读者和作家。它也是线程安全的,因此您不需要同步您的读者和作者。

除此之外,请将synchronized关键字替换为ReadWriteLock。这将允许多个同时读者。

答案 1 :(得分:4)

尽量不重新实现可用内容:Guava Caches。它具有您需要的几乎所有功能:基于大小的驱逐,并发,加权。如果它符合您的需求,请使用它。如果不是尝试实施你的,但总是先评估(在我看来)。只是一个建议。

答案 2 :(得分:1)

您需要像这样运行性能测试

Map<Object, Object> map = Collections.synchronizedMap(new LinkedHashMap<Object, Object>(16, 0.7f, true) {
    @Override
    protected boolean removeEldestEntry(Map.Entry<Object, Object> eldest) {
        return size() > 1000;
    }
});
Integer[] values = new Integer[10000];
for (int i = 0; i < values.length; i++)
    values[i] = i;

long start = System.nanoTime();
for (int i = 0; i < 1000; i++) {
    for (int j = 0; j < values.length; j++) {
        map.get(values[j]);
        map.get(values[j / 2]);
        map.get(values[j / 3]);
        map.get(values[j / 4]);
        map.put(values[j], values[j]);
    }
}
long time = System.nanoTime() - start;
long rate = (5 * values.length * 1000) * 1000000000L / time;
System.out.printf("Performed get/put operations at a rate of %,d per second%n", rate);

在我的2.5 GHz i5笔记本电脑上打印

Performed get/put operations at a rate of 27,170,035 per second

您需要每秒多少次操作?

答案 3 :(得分:1)

如前所述,麻烦的主要原因是更新LRU算法中的共享数据结构。为了克服这个问题,您可以使用分区,或者使用另一种逐出算法然后使用LRU。有现代算法比LRU表现更好。请参阅cache2k benchmarks page上有关该主题的比较。

cache2k逐出实现CLOCK和CLOCK-Pro具有完全读取并发性而无需锁定。

答案 4 :(得分:0)

LRU方案本身就涉及对共享结构的独占修改。因此,争论已经给出,你无能为力。

如果您不需要严格的LRU并且可以容忍驱逐政策的某些不一致,那么这些东西会查找并且更明亮。您的条目(值包装器)需要一些使用情况统计信息,您需要一些基于所述使用情况统计信息的过期策略。

然后,您可以使用基于ConcurrentSkipListMap的LRU相似结构(即您可能将其视为数据库索引),当缓存即将过期时使用该索引并使基于它的元素到期。你需要仔细检查等等,但它是可行的。 更新索引是免费的,但可以扩展。请记住,ConcurrentSkipListMap.size()是一项昂贵的操作O(n),所以你不应该依赖它们。实现并不难,但也不简单,除非你有足够的争用(核心)同步(LHM)可能是最简单的方法。