我有一个程序来预测新闻文章是否与某个主题有关。
有两个主要脚本:
1)bow_train.py - 生成一个wordlist和一个模型,并将它们存储在两个文件中(arab.model和wordList.pkl)
2)bow_predict.py - 使用wordlist和model对未知文章进行分类
使用的方法是逻辑回归而不是支持向量机,因为这种分类的逻辑回归性能应该更好。
我想改善结果。是否有其他方法可以让您强调某些关键字。例如,对于“阿拉伯之春”这个主题,我会输入一个关键词列表:[“抗议”,“动乱”,“革命”等],含有这些关键词的文件比没有关键词的文件有更高的概率。
bow_predict.py
import re
import os
import sys
import pickle
import operator
from collections import Counter
from liblinearutil import *
from bow_util import *
# path to directory with articles that should be classified
rootdirAll = 'C:\\Users\\Jiyda\\Desktop\\bow_arab\\all\\'
# load the wordList and model from the training phase
wordListIn = open('wordList.pkl', 'rb')
m = load_model('arab.model')
wordList = pickle.load(wordListIn)
counterByFilepathAll = {}
# count and store term frequencies
for folder, subs, files in os.walk(rootdirAll):
for filename in files:
filepath = os.path.join(folder, filename)
wordsInArticle = get_words_from_file(filepath)
counterByFilepathAll[filepath] = count_words(wordsInArticle)
denseData = []
# generate features from term frequencies (bag-of-words)
for _, counter in counterByFilepathAll.iteritems():
denseData.append(gen_features(counter, wordList))
# assume output class is 1 (liblinear/libsvm always require a output class
# even for unknown data)
classList = [1 for _ in xrange(0, len(counterByFilepathAll))]
# predict using the model from training phase
y, x = classList, denseData
p_label, p_acc, p_val = predict(y, x, m)
# store probabilites by filepath
probByFilepath = {}
i = 0
for filepath, _ in counterByFilepathAll.iteritems():
probByFilepath[filepath] = p_val[i]
i += 1
# sort by probability
sortedByProb = sorted(probByFilepath.iteritems(),
key=operator.itemgetter(1),
reverse=True)
# write to output file
probsOut = open('probsOut.txt', 'wb')
for t in sortedByProb:
probsOut.write(' '.join(str(s) for s in t) + '\n')
probsOut.close()
bow_train.py
import re
import os
import sys
import copy
import pickle
from collections import defaultdict
from collections import Counter
from liblinearutil import *
from bow_util import *
# Initialize directories for articles
rootdirArab = sys.argv[1]
rootdirNoArab = sys.argv[2]
#rootdirArab = 'C:\\Users\\Jiyda\\Desktop\\bow_arab\\arab\\'
#rootdirNoArab = 'C:\\Users\\Jiyda\\Desktop\\bow_arab\\no_arab\\'
wordSet = set()
counterByFilepathArab = {}
counterByFilepathNoArab = {}
# generate set of all words in all articles
for rootdir in [rootdirArab, rootdirNoArab]:
for folder, subs, files in os.walk(rootdir):
for filename in files:
filepath = os.path.join(folder, filename)
wordsInArticle = get_words_from_file(filepath)
wordSet = wordSet.union(wordSet, wordsInArticle)
# store sorted set in list
wordList = sorted(wordSet)
# save sorted list to output file for prediction phase
wordListOut = open('wordList.pkl', 'wb')
pickle.dump(wordList, wordListOut)
# count and store term frequencies for all arab spring training articles
for folder, subs, files in os.walk(rootdirArab):
for filename in files:
filepath = os.path.join(folder, filename)
wordsInArticle = get_words_from_file(filepath)
counterByFilepathArab[filepath] = count_words(wordsInArticle)
# count and store term frequencies for all non arab spring training articles
for folder, subs, files in os.walk(rootdirNoArab):
for filename in files:
filepath = os.path.join(folder, filename)
wordsInArticle = get_words_from_file(filepath)
counterByFilepathNoArab[filepath] = count_words(wordsInArticle)
# generate features. the features for one article are a list of the frequenices
# of each term in wordList found in the article
denseData = []
for counter in counterByFilepathArab.values():
denseData.append(gen_features(counter, wordList))
for counter in counterByFilepathNoArab.values():
denseData.append(gen_features(counter, wordList))
# set output value to 1 for arab spring articles and -1 for non arab spring articles
classList = [1 for _ in xrange(0, len(counterByFilepathArab))] + \
[-1 for _ in xrange(0, len(counterByFilepathNoArab))]
# train logistic regression model
y, x = classList, denseData
prob = problem(y, x)
# uncomment to obtain cross validation results
#param = parameter('-v 5')
m = train(prob)#, param)
# store model in output file for prediction phase
save_model('arab.model', m)
# uncomment to check if training worked as expected
#p_label, p_acc, p_val = predict(y, x, m)
#ACC, MSE, SCC = evaluations(y, p_label)
wordListOut.close()