我有一个二维数据和四边形的二维网格,描述了一个细分为补丁的域。数据在每个网格节点处定义。数据的不连续性存在于补丁边界,即数据在同一位置被多次定义。
如何使用Python在节点之间使用线性插值绘制此数据,并在每个补丁面上正确表示不连续值?
下面是三个示例元素或补丁,每个都有六个节点值。
节点位置和值数据可能存储在[Kx3x2]
数组中,其中K是元素数。例如,
x = np.array( [
[ [0.0, 1.0], [0.0, 1.0], [0.0, 1.0] ], #element 0
[ [1.0, 2.0], [1.0, 2.0], [1.0, 2.0] ], #element 1
[ [2.0, 3.0], [2.0, 3.0], [2.0, 3.0] ], #element 2
] )
y = np.array( [
[ [0.0, 0.0], [0.5, 0.5], [1.0, 1.0] ], #element 0
[ [0.0, 1.0], [0.5, 1.5], [1.0, 2.0] ], #element 1
[ [1.0, 1.0], [1.5, 1.5], [2.0, 2.0] ], #element 2
] )
z = np.array( [
[ [0.0, 0.5], [0.0, 0.8], [0.0, 1.0] ], #element 0
[ [0.3, 1.0], [0.6, 1.2], [0.8, 1.3] ], #element 1
[ [1.2, 1.5], [1.3, 1.4], [1.5, 1.7] ], #element 2
] )
我考虑过pyplot.imshow()
。这不能同时考虑整个域,并且仍然代表多值不连续节点。为每个补丁单独调用imshow()
可能会有效。但是,我如何在同一轴上绘制每个补丁图像?对于非矩形补丁,imshow()
也存在问题,这是我的一般情况。
我考虑过pyplot.pcolormesh()
,但它似乎只适用于以细胞为中心的数据。
答案 0 :(得分:5)
一个选项通过对所有元素进行三角测量,然后使用我现在发现的matplotlib tripcolor()
函数进行绘图。两个有用的演示是here和here。
我的全局域名的自动三角测量可能会有问题,但单个四边形的Delaunay三角剖分非常有效:
我通过附加每个元素的三角测量来创建全局三角测量。这意味着共享节点实际上在位置数组和值数组中重复。这允许元素面处的不连续数据。
使用tripcolor()
函数可以实现根据需要绘制线性插值和不连续性,为每个节点提供节点位置和值。
我有点担心轮廓绘图可能如何工作,因为元素面不再逻辑连接。 tricontour()
仍然按预期工作。 (此处显示三角形覆盖)
使用以下代码重现:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
x = np.array( [
[ [0.0, 1.0], [0.0, 1.0], [0.0, 1.0] ], #element 0
[ [1.0, 2.0], [1.0, 2.0], [1.0, 2.0] ], #element 1
[ [2.0, 3.0], [2.0, 3.0], [2.0, 3.0] ], #element 2
] )
y = np.array( [
[ [0.0, 0.0], [0.5, 0.5], [1.0, 1.0] ], #element 0
[ [0.0, 1.0], [0.5, 1.5], [1.0, 2.0] ], #element 1
[ [1.0, 1.0], [1.5, 1.5], [2.0, 2.0] ], #element 2
] )
z = np.array( [
[ [0.0, 0.5], [0.0, 0.8], [0.0, 1.0] ], #element 0
[ [0.3, 1.0], [0.6, 1.2], [0.8, 1.3] ], #element 1
[ [1.2, 1.5], [1.3, 1.4], [1.5, 1.7] ], #element 2
] )
global_num_pts = z.size
global_x = np.zeros( global_num_pts )
global_y = np.zeros( global_num_pts )
global_z = np.zeros( global_num_pts )
global_triang_list = list()
offset = 0;
num_triangles = 0;
#process triangulation element-by-element
for k in range(z.shape[0]):
points_x = x[k,...].flatten()
points_y = y[k,...].flatten()
z_element = z[k,...].flatten()
num_points_this_element = points_x.size
#auto-generate Delauny triangulation for the element, which should be flawless due to quadrilateral element shape
triang = tri.Triangulation(points_x, points_y)
global_triang_list.append( triang.triangles + offset ) #offseting triangle indices by start index of this element
#store results for this element in global triangulation arrays
global_x[offset:(offset+num_points_this_element)] = points_x
global_y[offset:(offset+num_points_this_element)] = points_y
global_z[offset:(offset+num_points_this_element)] = z_element
num_triangles += triang.triangles.shape[0]
offset += num_points_this_element
#go back and turn all of the triangle indices into one global triangle array
offset = 0
global_triang = np.zeros( (num_triangles, 3) )
for t in global_triang_list:
global_triang[ offset:(offset+t.shape[0] )] = t
offset += t.shape[0]
plt.figure()
plt.gca().set_aspect('equal')
plt.tripcolor(global_x, global_y, global_triang, global_z, shading='gouraud' )
#plt.tricontour(global_x, global_y, global_triang, global_z )
#plt.triplot(global_x, global_y, global_triang, 'go-') #plot just the triangle mesh
plt.xlim((-0.25, 3.25))
plt.ylim((-0.25, 2.25))
plt.show()