Mysql查询得到温度趋势

时间:2013-04-02 11:09:48

标签: mysql logging temperature trend

我有一张非常大的桌子,我每1分钟就有一次温度记录,我想查询的是一个趋势;类似于每个选定时期的百分比增加或百分比减少(小时或15分钟;取决于查询)

我的表看起来像(例子),如下所示

ID      time                temp
119950  2013-03-27 07:56:05 27.25
119951  2013-03-27 07:57:05 27.50
119952  2013-03-27 07:58:05 27.60
119953  2013-03-27 07:59:05 27.80
119954  2013-03-27 08:00:05 27.70
119955  2013-03-27 08:01:05 27.50
119956  2013-03-27 08:02:05 27.25
119957  2013-03-27 08:03:05 27.10
119958  2013-03-27 08:04:05 26.9
119959  2013-03-27 08:05:05 27.1
119960  2013-03-27 08:06:05 27.25
119961  2013-03-27 08:07:05 27.6

我相信一个趋势可以计算如下(按照link),但如果你有更好的方法,请纠正我; 取每行之间的差值然后加上然后按计数除。所以对于上面的表我们得到了

Diff
+0.25
+0.10
+0.20
-0.10
-0.20
-0.25
-0.15
-0.20
+0.20
+0.15
+0.35

最后11分钟的每分钟趋势是diff / 11的总和。最后11分钟,每分钟0.063C。

有人可以帮助我获得过去3小时每小时的百分比趋势。和每分钟趋势1小时?

2 个答案:

答案 0 :(得分:2)

CREATE TABLE temperature_log
(ID      INT NOT NULL,dt DATETIME NOT NULL, temperature DECIMAL(5,2) NOT NULL);

INSERT INTO temperature_log VALUES
(119950  ,'2013-03-27 07:56:05',27.25),
(119951  ,'2013-03-27 07:57:05', 27.50),
(119952  ,'2013-03-27 07:58:05', 27.60),
(119953  ,'2013-03-27 07:59:05', 27.80),
(119954  ,'2013-03-27 08:00:05', 27.70),
(119955  ,'2013-03-27 08:01:05', 27.50),
(119956  ,'2013-03-27 08:02:05', 27.25),
(119957  ,'2013-03-27 08:03:05', 27.10),
(119958  ,'2013-03-27 08:04:05', 26.9),
(119959  ,'2013-03-27 08:05:05', 27.1),
(119960  ,'2013-03-27 08:06:05', 27.25),
(119961  ,'2013-03-27 08:07:05', 27.6);

SELECT x.*
     , x.temperature - y.temperature diff
     , COUNT(*) cnt
     ,(x.temperature-y.temperature)/COUNT(*) trend 
  FROM temperature_log x 
  JOIN temperature_log y 
    ON y.id < x.id 
 GROUP 
    BY x.id;
+--------+---------------------+-------------+-------+-----+-----------+
| ID     | dt                  | temperature | diff  | cnt | trend     |
+--------+---------------------+-------------+-------+-----+-----------+
| 119951 | 2013-03-27 07:57:05 |       27.50 |  0.25 |   1 |  0.250000 |
| 119952 | 2013-03-27 07:58:05 |       27.60 |  0.35 |   2 |  0.175000 |
| 119953 | 2013-03-27 07:59:05 |       27.80 |  0.55 |   3 |  0.183333 |
| 119954 | 2013-03-27 08:00:05 |       27.70 |  0.45 |   4 |  0.112500 |
| 119955 | 2013-03-27 08:01:05 |       27.50 |  0.25 |   5 |  0.050000 |
| 119956 | 2013-03-27 08:02:05 |       27.25 |  0.00 |   6 |  0.000000 |
| 119957 | 2013-03-27 08:03:05 |       27.10 | -0.15 |   7 | -0.021429 |
| 119958 | 2013-03-27 08:04:05 |       26.90 | -0.35 |   8 | -0.043750 |
| 119959 | 2013-03-27 08:05:05 |       27.10 | -0.15 |   9 | -0.016667 |
| 119960 | 2013-03-27 08:06:05 |       27.25 |  0.00 |  10 |  0.000000 |
| 119961 | 2013-03-27 08:07:05 |       27.60 |  0.35 |  11 |  0.031818 |
+--------+---------------------+-------------+-------+-----+-----------+

顺便提一下,如果你有兴趣获得每小时的平均成绩,你可以这样做......

SELECT DATE_FORMAT(x.dt,'%Y-%m-%d %h:00:00')
     , AVG(x.temperature) avg_temp
  FROM temperature_log x 
 GROUP 
    BY DATE_FORMAT(x.dt,'%Y-%m-%d %h:00:00');

答案 1 :(得分:0)

我知道这门课程很老,但是如果我能与您分享我的经验。 也许这对下一个人可能有用:)

我有一张很大的桌子,上面列出了我所有设备的温度(100+),我所有的设备每5秒推一次温度(一个设备有6个视野,我可以得到每个区域的温度)。

所以桌子很大。对我而言,先前的响应无法处理大量数据。 看我在做什么:

这是我的大表的架构:

CREATE TABLE `histozone` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `camera_id` INT(11) NULL DEFAULT NULL,
    `Date` DATE NOT NULL,
    `Time` TIME NOT NULL,
    `ZoneId` INT(11) NOT NULL,
    `AverageTemperature` INT(11) NOT NULL,
    `MinimumTemperature` INT(11) NOT NULL,
    `MaximumTemperature` INT(11) NOT NULL,
    PRIMARY KEY (`id`),
    INDEX `IDX_19E8F664B47685CD` (`camera_id`),
    INDEX `datetime` (`camera_id`, `Date`, `Time`),
);

就像您看到的一样,每行分别有DateTime

  1. 在我的PHP代码中使用MEMORY引擎为每个设备创建一个临时表。我限制了tmp表的持续时间(日期和时间)。
DROP TEMPORARY TABLE IF EXISTS histoZoneMaxTempCamera{$cameraId};
CREATE TEMPORARY TABLE histoZoneMaxTempCamera{$cameraId} (
    `id` INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
    `originalid` INT(11) NOT NULL,
    `date` DATE NOT NULL,
    `time` TIME NOT NULL,
    `zoneid` INT(11) NOT NULL,
    `maximumtemperature` INT(11) NOT NULL,
    INDEX (`maximumtemperature`)
) ENGINE=MEMORY;
INSERT INTO histoZoneMaxTempCamera{$cameraId} (`originalid`, `date`, `time`, `zoneid`, `maximumtemperature`)
    SELECT
        h.id,
        h.Date,
        h.Time,
        h.ZoneId,
        h.MaximumTemperature
    FROM histozone h

    INNER JOIN (
        SELECT
            hz.camera_id,
            MAX(hz.MaximumTemperature) AS MaximumTemperature,
            hz.Date,
            hz.Time
        FROM histozone hz
        WHERE hz.camera_id = '{$cameraId}'
            AND hz.Date >= '{$date}'
            AND hz.Time >= '{$time}'
        GROUP BY hz.Date, hz.Time
    ) histozoneMaxTemp 
        ON  h.Date = histozoneMaxTemp.Date
        AND h.Time = histozoneMaxTemp.Time
        AND h.MaximumTemperature = histozoneMaxTemp.MaximumTemperature

    WHERE h.camera_id = histozoneMaxTemp.camera_id
    ORDER BY h.Date ASC, h.Time ASC;
  1. 最后一步是获取数据,趋势等...我,我只想要波动的温度点。在同一级别上具有很多点的图形并不有趣。
SELECT 
a.*
FROM (
    SELECT 
        x.id AS xid
        , x.Date AS `Date`
        , x.Time AS `Time`
        , x.maximumtemperature AS maximumtemperature
        , y.maximumtemperature AS previousmaximumtemperature
        , x.maximumtemperature - y.maximumtemperature diff
        ,(x.maximumtemperature-y.maximumtemperature)/MAX(x.id) trend 
    FROM histoZoneMaxTempCamera{$cameraId} x
    LEFT JOIN histoZoneMaxTempCamera{$cameraId} y
        ON y.id = (x.id - 1)
    GROUP BY x.id
) a
WHERE a.trend <> (
        SELECT b.trend
        FROM (
            SELECT 
                x.id AS xid
                ,(x.maximumtemperature-y.maximumtemperature)/MAX(x.id) trend 
            FROM histoZoneMaxTempCamera{$cameraId} x
            LEFT JOIN histoZoneMaxTempCamera{$cameraId} y
                ON y.id = (x.id - 1)
            GROUP BY x.id
        ) b
        WHERE b.xid = a.xid - 1
    ) OR a.xid = 1
;

这很完美,即使在起始桌很大的情况下也非常快。