我有一个非常(非常非常)大的二维数组 - 大约有一千列,但有几百万行(足以让它不适合我的32GB机器上的内存)。我想计算千列中每一列的方差。一个关键的事实有助于:我的数据是8位无符号整数。
以下是我打算如何处理这个问题。我将首先构造一个名为 counts 的新二维数组,其形状为(1000,256),其概念为counts[i,:] == np.bincount(bigarray[:,i])
。一旦我有了这个数组,计算方差将是微不足道的。
麻烦的是,我不确定如何有效地计算它(这个计算必须实时运行,并且我希望带宽受到我的SSD返回数据的速度的限制)。这是有用的东西,但是太神奇了:
counts = np.array((1000,256))
for row in iterator_over_bigaray_rows():
for i,val in enumerate(row):
counts[i,val] += 1
有没有办法写这个以更快地运行?像这样:
counts = np.array((1000,256))
for row in iterator_over_bigaray_rows():
counts[i,:] = // magic np one-liner to do what I want
答案 0 :(得分:1)
我认为这就是你想要的:
counts[np.arange(1000), row] += 1
但是如果你的数组有数百万行,你仍然需要迭代数百万行。以下技巧使我的系统加速接近5倍:
chunk = np.random.randint(256, size=(1000, 1000))
def count_chunk(chunk):
rows, cols = chunk.shape
col_idx = np.arange(cols) * 256
counts = np.bincount((col_idx[None, :] + chunk).ravel(),
minlength=256*cols)
return counts.reshape(-1, 256)
def count_chunk_by_rows(chunk):
counts = np.zeros(chunk.shape[1:]+(256,), dtype=np.int)
indices = np.arange(chunk.shape[-1])
for row in chunk:
counts[indices, row] += 1
return counts
现在:
In [2]: c = count_chunk_by_rows(chunk)
In [3]: d = count_chunk(chunk)
In [4]: np.all(c == d)
Out[4]: True
In [5]: %timeit count_chunk_by_rows(chunk)
10 loops, best of 3: 80.5 ms per loop
In [6]: %timeit count_chunk(chunk)
100 loops, best of 3: 13.8 ms per loop