从2 Vector3D中检索3个欧拉角

时间:2013-03-25 15:10:26

标签: c# .net vb.net robotics

如何从2 vector3D中检索3个欧拉角?

由于

Cedre酒店

dim vector1 = new Vector3D(0, 0, 1);

dim vector2 = new Vector3D(0.33, 0.45, 0.49);


dim myEuler = GetEulerFrom2Vector(vector1,vector2); // ?????

我在直角坐标系中工作,我使用ZYX euler惯例

2 个答案:

答案 0 :(得分:0)

我们可以假设这两个向量彼此垂直vector1.Dot(vector2)==0吗?如果是,则找到第三个向量以形成坐标系

vector1 = vector1.Normalized();
vector2 = vector2.Normalized();
vector3 = VectorCross(vector1,vector2).Normalized();

其中VectorCross是3D矢量叉积,Normalized()返回单位矢量。

现在你的旋转矩阵E

 | vector1.x   vector2.x   vector3.x |
 | vector1.y   vector2.y   vector3.y |
 | vector1.z   vector2.z   vector3.z |

现在,您可以使用instructions here从旋转矩阵转换为欧拉角。

PS。如果vector2vector1不垂直,则可以在vector2 = CrossProduct(vector3, vector1).Normalized()计算后vector3使其垂直。

这是我用来从两个轴到旋转矩阵的代码:

    public static mat3 AlignZX(vec3 unit_z, vec3 unit_x)
    {
        unit_x=unit_x.Normalized();
        unit_z=unit_z.Normalized();
        vec3 unit_y=unit_z.Cross(unit_x);
        unit_x=unit_y.Cross(unit_z);
        return mat3.Combine(unit_x, unit_y, unit_z);
    }
    public static mat3 AlignXY(vec3 unit_x, vec3 unit_y)
    {
        unit_x=unit_x.Normalized();
        unit_y=unit_y.Normalized();
        vec3 unit_z=unit_x.Cross(unit_y);
        unit_y=unit_z.Cross(unit_x);
        return mat3.Combine(unit_x, unit_y, unit_z);
    }
    public static mat3 AlignYZ(vec3 unit_y, vec3 unit_z)
    {
        unit_y=unit_y.Normalized();
        unit_z=unit_z.Normalized();
        vec3 unit_x=unit_y.Cross(unit_z);
        unit_z=unit_x.Cross(unit_y);
        return mat3.Combine(unit_x, unit_y, unit_z);
    }

答案 1 :(得分:0)

我使用旋转矩阵:

R11 R12 R13
R21 R22 R23
R31 R32 R33

R = Rz Ry Rx

if (R31 <> ±1)
    y1 = -sin-1(R31)
    y2 = pi + sin-1(R31)

    x1 = atan2 (R32/cos y1,R33/cos y1)
    x2 = atan2 (R32/cos y2,R33/cos y2)

    z1 = atan2( R21/cos y1,R11/cos y1)
    z2 = atan2( R21/cos y2,R11/cos y2)
        Else
    z= anything; can set to 0
    if (R31 = -1)
        y = -pi / 2
        x = z  + atan2(R12,R13)
     Else
         y = -pi / 2
         x  = -z + atan2(-R12,-R13)     
    End If
End If

https://truesculpt.googlecode.com/hg-history/38000e9dfece971460473d5788c235fbbe82f31b/Doc/rotation_matrix_to_euler.pdf

或简单版

    result.X = Math.Atan2(R32, R33) * (180.0 / Math.PI)
    result.Y = Math.Atan2(-1 * R31, Math.Sqrt(R32 * R32 + R33 * R33)) * (180.0 / Math.PI)
    result.Z = Math.Atan2(R21, R11) * (180.0 / Math.PI)