我有一个算法:
所以:
import math, random
def poisson(m, n):
p=math.exp(-m)
r=[p]
for i in range(1, n):
p*=m/float(i)
r.append(p)
return r
def simulate(mx, my, n):
r=[0.0 for i in range(3)]
px, py = (poisson(mx, n),
poisson(my, n))
for i in range(n):
for j in range(n):
if i > j:
k=0
elif i < j:
k=1
else:
k=2
r[k]+=px[i]*py[j]
return r
现在我需要在给定一组特定输出的情况下求解x和y。我已经将以下解算器功能混合在一起:
def solve(p, n, generations, decay, tolerance):
def rms_error(X, Y):
return (sum([(x-y)**2
for x, y in zip(X, Y)])/float(len(X)))**0.5
def calc_error(x, y, n, target):
guess=simulate(x, y, n)
return rms_error(target, guess)
q=[0, 0]
err=calc_error(math.exp(q[0]), math.exp(q[1]), n, p)
bestq, besterr = q, err
for i in range(generations):
if besterr < tolerance:
break
q=list(bestq)
if random.random() < 0.5:
j=0
else:
j=1
fac=((generations-i+1)/float(generations))**decay
q[j]+=random.gauss(0, 1)*fac
err=calc_error(math.exp(q[0]), math.exp(q[1]), n, p)
if err < besterr:
bestq, besterr = q, err
# print (i, bestq, besterr)
q, err = [math.exp(q) for q in bestq], besterr
return (i, q, err)
有效,但似乎需要进行相对大量的尝试才能返回非常优化的响应:
if __name__=="__main__":
p, n = [0.5, 0.2, 0.3], 10
q, err = solve_match_odds(p, n,
generations=1000,
decay=2,
tolerance=1e-5)
print q
print simulate_match_odds(q[0], q[1], n)
print (i, err)
和
justin@justin-ThinkPad-X220:~/work/$ python solve.py
[0.5, 0.2, 0.3]
[0.5000246335218251, 0.20006624338256798, 0.29990837191131686]
(999, 6.680993630511076e-05)
justin@justin-ThinkPad-X220:~/work/$
我不是CS专业,我觉得我错过了一系列搜索文献。有人可以建议一个更好的方法来搜索二维空间中的变量吗?
感谢。
答案 0 :(得分:0)
您可以使用scipy.optimize库来解决此问题:
import math, random
def poisson(m, n):
p=math.exp(-m)
r=[p]
for i in range(1, n):
p*=m/float(i)
r.append(p)
return r
def simulate(mx, my, n):
r=[0.0 for i in range(3)]
px, py = (poisson(mx, n),
poisson(my, n))
for i in range(n):
for j in range(n):
if i > j:
k=0
elif i < j:
k=1
else:
k=2
r[k]+=px[i]*py[j]
return r
from scipy import optimize
Target, N = [0.5, 0.2, 0.3], 10
def error(p, target, n):
r = simulate(p[0], p[1], n)
return np.sum(np.subtract(target, r)**2)
r = optimize.fmin(error, (0, 0), args=(Target, N))
print simulate(r[0], r[1], n)
输出:
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 67
Function evaluations: 125
[0.49999812501285623, 0.20000418001288445, 0.2999969464616799]