我需要一些帮助来实现Dijkstra的算法,并希望有人能够帮助我。我有它,所以它打印一些路线,但它没有捕获路径的正确成本。
这是我的节点结构:
class Node
{
public enum Color {White, Gray, Black};
public string Name { get; set; } //city
public List<NeighborNode> Neighbors { get; set; } //Connected Edges
public Color nodeColor = Color.White;
public int timeDiscover { get; set; }//discover time
public int timeFinish { get; set; } // finish time
public Node()
{
Neighbors = new List<NeighborNode>();
}
public Node(string n, int discover)
{
Neighbors = new List<NeighborNode>();
this.Name = n;
timeDiscover = discover;
}
public Node(string n, NeighborNode e, decimal m)
{
Neighbors = new List<NeighborNode>();
this.Name = n;
this.Neighbors.Add(e);
}
}
class NeighborNode
{
public Node Name { get; set; }
public decimal Miles { get; set; } //Track the miles on the neighbor node
public NeighborNode() { }
public NeighborNode(Node n, decimal m)
{
Name = n;
Miles = m;
}
}
这是我的算法:
public void DijkstraAlgorithm(List<Node> graph)
{
List<DA> _algorithmList = new List<DA>(); //track the node cost/positioning
Stack<Node> _allCities = new Stack<Node>(); // add all cities into this for examination
Node _nodeToExamine = new Node(); //this is the node we're currently looking at.
decimal _cost = 0;
foreach (var city in graph) // putting these onto a stack for easy manipulation. Probably could have just made this a stack to start
{
_allCities.Push(city);
_algorithmList.Add(new DA(city));
}
_nodeToExamine = _allCities.Pop(); //pop off the first node
while (_allCities.Count != 0) // loop through each city
{
foreach (var neighbor in _nodeToExamine.Neighbors) //loop through each neighbor of the node
{
for (int i = 0; i < _algorithmList.Count; i++) //search the alorithm list for the current neighbor node
{
if (_algorithmList[i].Name.Name == neighbor.Name.Name) //found it
{
for (int j = 0; j < _algorithmList.Count; j++) //check for the cost of the parent node
{
if (_algorithmList[j].Name.Name == _nodeToExamine.Name) //looping through
{
if (_algorithmList[j].Cost != 100000000) //not infinity
_cost = _algorithmList[j].Cost; //set the cost to be the parent cost
break;
}
}
_cost = _cost + neighbor.Miles;
if (_algorithmList[i].Cost > _cost) // check to make sure the miles are less (better path)
{
_algorithmList[i].Parent = _nodeToExamine; //set the parent to be the top node
_algorithmList[i].Cost = _cost; // set the weight to be correct
break;
}
}
}
}
_cost = 0;
_nodeToExamine = _allCities.Pop();
}
}
这是图表的样子:
图表列表节点基本上是
节点 - 邻居节点
例如:
Node = Olympia,Neighbor Nodes = Lacey和Tacoma
答案 0 :(得分:4)
我认为问题在于
_cost = _algorithmList[j].Cost; //set the cost to be the parent cost
您直接分配费用,而不是增加新旧费用。
此外,你做的事实
if (_algorithmList[j].Cost != 100000000) //not infinity
意味着如果路径的成本是无穷大,你就会做相反的事情 - 你将零添加到路径的成本,使其成为最便宜而不是最昂贵的路径
如果要正确检查无穷大,则必须在检查成本时直接跳过该路径,而不是跳过计算成本。
答案 1 :(得分:0)
我需要重写整个算法,因为它没有正确处理:
public void DijkstraAlgorithm(List<Node> graph)
{
List<DA> _algorithmList = new List<DA>(); //track the node cost/positioning
DA _nodeToExamine = new DA(); //this is the node we're currently looking at.
bool flag = true; //for exting the while loop later
foreach (var node in graph)
{
_algorithmList.Add(new DA(node));
}
foreach (var children in _algorithmList[0].Name.Neighbors) //just starting at the first node
{
for (int i = 0; i < _algorithmList.Count; i++)
{
if (children.Name == _algorithmList[i].Name)
{
_algorithmList[i].Parent = _algorithmList[0].Name;
_algorithmList[i].Cost = children.Miles;
_algorithmList[0].Complete = true;
}
}
}
while (flag) //loop through the rest to organize
{
_algorithmList = _algorithmList.OrderBy(x => x.Cost).ToList(); //sort by shortest path
for (int i = 0; i < _algorithmList.Count; i++) //loop through each looking for a node that isn't complete
{
if (_algorithmList[i].Complete == false)
{
_nodeToExamine = _algorithmList[i];
break;
}
if (i == 13) //if the counter reaches 13 then we have completed all nodes and should bail out of the loop
flag = false;
}
if (_nodeToExamine.Name.Neighbors.Count == 0) //set any nodes that do not have children to be complete
{
_nodeToExamine.Complete = true;
}
foreach (var children in _nodeToExamine.Name.Neighbors) //loop through the children/neighbors to see if there's one with a shorter path
{
for (int i = 0; i < _algorithmList.Count; i++)
{
if (children.Name == _algorithmList[i].Name)
{
if (_nodeToExamine.Cost + children.Miles < _algorithmList[i].Cost) //found a better path
{
_algorithmList[i].Parent = _nodeToExamine.Name;
_algorithmList[i].Cost = _nodeToExamine.Cost + children.Miles;
}
}
}
_nodeToExamine.Complete = true;
}
}
PrintDijkstraAlgoirthm(_algorithmList);
}
public void PrintDijkstraAlgoirthm(List<DA> _finalList)
{
foreach (var item in _finalList)
{
if (item.Parent != null)
Console.WriteLine("{0} ---> {1}: {2}", item.Parent.Name, item.Name.Name, item.Cost);
}
}