在CUDA中转置矩阵的最有效方法是什么?

时间:2013-03-17 07:35:03

标签: cuda cublas

我有一个M*N主机内存矩阵,在复制到设备内存后,我需要将它转换为N*M矩阵。是否有任何cuda(cuBLAS ...)API这样做?我正在使用CUDA 4.谢谢!

3 个答案:

答案 0 :(得分:8)

为了回答你关于效率的问题,我已经比较了两种执行矩阵转置的方法,一种使用Thrust库,一种使用cublas<t>geam,正如Robert Crovella所建议的那样。比较的结果如下在Kepler K20c卡上:

| Matrix size   | Thrust [ms]   | cuBLAS [ms]   |
|               |               |               |
| 32x32         | 0.015         | 0.016         |
| 64x64         | 0.015         | 0.017         |
| 128x128       | 0.019         | 0.017         |
| 256x256       | 0.028         | 0.017         |
| 512x512       | 0.088         | 0.042         |
| 1024x1024     | 0.34          | 0.13          |
| 2048x2048     | 1.24          | 0.48          |
| 4096x4096     | 11.02         | 1.98          |

可以看出,cublas<t>geam优于使用Thrust的版本。以下是执行比较的代码。

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/functional.h>
#include <thrust/gather.h>
#include <thrust/scan.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <iostream>
#include <iomanip>
#include <cublas_v2.h>
#include <conio.h>
#include <assert.h>

/**********************/
/* cuBLAS ERROR CHECK */
/**********************/
#ifndef cublasSafeCall
#define cublasSafeCall(err)     __cublasSafeCall(err, __FILE__, __LINE__)
#endif

inline void __cublasSafeCall(cublasStatus_t err, const char *file, const int line)
{
    if( CUBLAS_STATUS_SUCCESS != err) {
        fprintf(stderr, "CUBLAS error in file '%s', line %d\n \nerror %d \nterminating!\n",__FILE__, __LINE__,err); 
        getch(); cudaDeviceReset(); assert(0); 
    }
}

// convert a linear index to a linear index in the transpose 
struct transpose_index : public thrust::unary_function<size_t,size_t>
{
    size_t m, n;

    __host__ __device__
    transpose_index(size_t _m, size_t _n) : m(_m), n(_n) {}

    __host__ __device__
    size_t operator()(size_t linear_index)
    {
        size_t i = linear_index / n;
        size_t j = linear_index % n;

        return m * j + i;
    }
};

// convert a linear index to a row index
struct row_index : public thrust::unary_function<size_t,size_t>
{
    size_t n;

    __host__ __device__
    row_index(size_t _n) : n(_n) {}

    __host__ __device__

    size_t operator()(size_t i)
    {
        return i / n;
    }
};

// transpose an M-by-N array
template <typename T>
void transpose(size_t m, size_t n, thrust::device_vector<T>& src, thrust::device_vector<T>& dst)
{
    thrust::counting_iterator<size_t> indices(0);

    thrust::gather
    (thrust::make_transform_iterator(indices, transpose_index(n, m)),
    thrust::make_transform_iterator(indices, transpose_index(n, m)) + dst.size(),
    src.begin(),dst.begin());
}

// print an M-by-N array
template <typename T>
void print(size_t m, size_t n, thrust::device_vector<T>& d_data)
{
    thrust::host_vector<T> h_data = d_data;

    for(size_t i = 0; i < m; i++)
    {
        for(size_t j = 0; j < n; j++)
            std::cout << std::setw(8) << h_data[i * n + j] << " ";
            std::cout << "\n";
    }
}

int main(void)
{
    size_t m = 5; // number of rows
    size_t n = 4; // number of columns

    // 2d array stored in row-major order [(0,0), (0,1), (0,2) ... ]
    thrust::device_vector<double> data(m * n, 1.);
    data[1] = 2.;
    data[3] = 3.;

    std::cout << "Initial array" << std::endl;
    print(m, n, data);

    std::cout << "Transpose array - Thrust" << std::endl;
    thrust::device_vector<double> transposed_thrust(m * n);
    transpose(m, n, data, transposed_thrust);
    print(n, m, transposed_thrust);

    std::cout << "Transpose array - cuBLAS" << std::endl;
    thrust::device_vector<double> transposed_cuBLAS(m * n);
    double* dv_ptr_in  = thrust::raw_pointer_cast(data.data());
    double* dv_ptr_out = thrust::raw_pointer_cast(transposed_cuBLAS.data());
    double alpha = 1.;
    double beta  = 0.;
    cublasHandle_t handle;
    cublasSafeCall(cublasCreate(&handle));
    cublasSafeCall(cublasDgeam(handle, CUBLAS_OP_T, CUBLAS_OP_T, m, n, &alpha, dv_ptr_in, n, &beta, dv_ptr_in, n, dv_ptr_out, m)); 
    print(n, m, transposed_cuBLAS);

    getch();

    return 0;
}

答案 1 :(得分:7)

cublas API

cublas<t>geam()

This function performs the matrix-matrix addition/transposition
the user can transpose matrix A by setting *alpha=1 and *beta=0.  

(并将transa运算符指定为CUBLAS_OP_T进行转置)

答案 2 :(得分:1)

CULA有辅助例程来计算转置(culaDevice?geTranspose)。如果是方形矩阵,您还可以使用inplace transposition(culaDevise?geTransposeInplace)。

注意:如果您符合特定条件,CULA可提供免费许可。