在我的项目中,我需要多次计算0-1向量的熵。这是我的代码:
def entropy(labels):
""" Computes entropy of 0-1 vector. """
n_labels = len(labels)
if n_labels <= 1:
return 0
counts = np.bincount(labels)
probs = counts[np.nonzero(counts)] / n_labels
n_classes = len(probs)
if n_classes <= 1:
return 0
return - np.sum(probs * np.log(probs)) / np.log(n_classes)
有更快的方法吗?
答案 0 :(得分:26)
四种不同的方法: scipy / numpy , numpy / math , pandas / numpy , numpy
import numpy as np
from scipy.stats import entropy
from math import log, e
import pandas as pd
import timeit
def entropy1(labels, base=None):
value,counts = np.unique(labels, return_counts=True)
return entropy(counts, base=base)
def entropy2(labels, base=None):
""" Computes entropy of label distribution. """
n_labels = len(labels)
if n_labels <= 1:
return 0
value,counts = np.unique(labels, return_counts=True)
probs = counts / n_labels
n_classes = np.count_nonzero(probs)
if n_classes <= 1:
return 0
ent = 0.
# Compute entropy
base = e if base is None else base
for i in probs:
ent -= i * log(i, base)
return ent
def entropy3(labels, base=None):
vc = pd.Series(labels).value_counts(normalize=True, sort=False)
base = e if base is None else base
return -(vc * np.log(vc)/np.log(base)).sum()
def entropy4(labels, base=None):
value,counts = np.unique(labels, return_counts=True)
norm_counts = counts / counts.sum()
base = e if base is None else base
return -(norm_counts * np.log(norm_counts)/np.log(base)).sum()
Timeit操作:
repeat_number = 1000000
a = timeit.repeat(stmt='''entropy1(labels)''',
setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import entropy1''',
repeat=3, number=repeat_number)
b = timeit.repeat(stmt='''entropy2(labels)''',
setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import entropy2''',
repeat=3, number=repeat_number)
c = timeit.repeat(stmt='''entropy3(labels)''',
setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import entropy3''',
repeat=3, number=repeat_number)
d = timeit.repeat(stmt='''entropy4(labels)''',
setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import entropy4''',
repeat=3, number=repeat_number)
Timeit结果:
# for loop to print out results of timeit
for approach,timeit_results in zip(['scipy/numpy', 'numpy/math', 'pandas/numpy', 'numpy'], [a,b,c,d]):
print('Method: {}, Avg.: {:.6f}'.format(approach, np.array(timeit_results).mean()))
Method: scipy/numpy, Avg.: 63.315312
Method: numpy/math, Avg.: 49.256894
Method: pandas/numpy, Avg.: 884.644023
Method: numpy, Avg.: 60.026938
获胜者: numpy / math (entropy2)
值得注意的是,上面的entropy2
函数可以处理数字和文本数据。例如:entropy2(list('abcdefabacdebcab'))
。原始海报的回答是从2013年开始的,并且有一个特定的用例用于分组整数,但它不会用于文本。
答案 1 :(得分:20)
将数据设为pd.Series
和scipy.stats
,计算给定数量的熵非常简单:
import pandas as pd
import scipy.stats
def ent(data):
"""Calculates entropy of the passed `pd.Series`
"""
p_data = data.value_counts() # counts occurrence of each value
entropy = scipy.stats.entropy(p_data) # get entropy from counts
return entropy
注意:scipy.stats
将规范化提供的数据,因此不需要明确地完成,即传递一组计数工作正常。
答案 2 :(得分:11)
根据unutbu的建议,我创建了一个纯python实现。
def entropy2(labels):
""" Computes entropy of label distribution. """
n_labels = len(labels)
if n_labels <= 1:
return 0
counts = np.bincount(labels)
probs = counts / n_labels
n_classes = np.count_nonzero(probs)
if n_classes <= 1:
return 0
ent = 0.
# Compute standard entropy.
for i in probs:
ent -= i * log(i, base=n_classes)
return ent
我遗漏的一点是标签是一个大数组,但probs是3或4个元素长。使用纯python我的应用程序现在快两倍。
答案 3 :(得分:8)
答案不依赖于numpy:
import math
from collections import Counter
def eta(data, unit='natural'):
base = {
'shannon' : 2.,
'natural' : math.exp(1),
'hartley' : 10.
}
if len(data) <= 1:
return 0
counts = Counter()
for d in data:
counts[d] += 1
ent = 0
probs = [float(c) / len(data) for c in counts.values()]
for p in probs:
if p > 0.:
ent -= p * math.log(p, base[unit])
return ent
这将接受你可以抛出的任何数据类型:
>>> eta(['mary', 'had', 'a', 'little', 'lamb'])
1.6094379124341005
>>> eta([c for c in "mary had a little lamb"])
2.311097886212714
@Jarad提供的答案也提出了时间安排。为此:
repeat_number = 1000000
e = timeit.repeat(
stmt='''eta(labels)''',
setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import eta''',
repeat=3,
number=repeat_number)
Timeit结果:(我相信这比最好的numpy方法快4倍)
print('Method: {}, Avg.: {:.6f}'.format("eta", np.array(e).mean()))
Method: eta, Avg.: 10.461799
答案 4 :(得分:7)
我最喜欢的熵功能如下:
def entropy(labels):
prob_dict = {x:labels.count(x)/len(labels) for x in labels}
probs = np.array(list(prob_dict.values()))
return - probs.dot(np.log2(probs))
我仍在寻找一种更好的避免字典的方法 - &gt;值 - &gt;列表 - &gt; np.array转换。如果我发现它,我会再次发表评论。
答案 5 :(得分:3)
看看这里也有一个经典的香农熵,应该比JohnEntropy快一点http://pythonfiddle.com/shannon-entropy-calculation/
答案 6 :(得分:3)
均匀分布的数据(高熵):
s=range(0,256)
Shannon熵计算一步一步:
import collections
# calculate probability for each byte as number of occurrences / array length
probabilities = [n_x/len(s) for x,n_x in collections.Counter(s).items()]
# [0.00390625, 0.00390625, 0.00390625, ...]
# calculate per-character entropy fractions
e_x = [-p_x*math.log(p_x,2) for p_x in probabilities]
# [0.03125, 0.03125, 0.03125, ...]
# sum fractions to obtain Shannon entropy
entropy = sum(e_x)
>>> entropy
8.0
单行(假设import collections
):
def H(s): return sum([-p_x*math.log(p_x,2) for p_x in [n_x/len(s) for x,n_x in collections.Counter(s).items()]])
正确的功能:
import collections
def H(s):
probabilities = [n_x/len(s) for x,n_x in collections.Counter(s).items()]
e_x = [-p_x*math.log(p_x,2) for p_x in probabilities]
return sum(e_x)
测试用例 - 从CyberChef entropy estimator获取的英文文本:
>>> H(range(0,256))
8.0
>>> H(range(0,64))
6.0
>>> H(range(0,128))
7.0
>>> H([0,1])
1.0
>>> H('Standard English text usually falls somewhere between 3.5 and 5')
4.228788210509104
答案 7 :(得分:3)
这是我的方法:
labels = [0, 0, 1, 1]
from collections import Counter
from scipy import stats
stats.entropy(list(Counter(labels).values()), base=2)
答案 8 :(得分:1)
此方法通过允许装箱扩展了其他解决方案。例如,bin=None
(默认)将不会对x
进行分箱,并且将为x
的每个元素计算经验概率,而bin=256
块x
则为256在计算经验概率之前先进行分类。
import numpy as np
def entropy(x, bins=None):
N = x.shape[0]
if bins is None:
counts = np.bincount(x)
else:
counts = np.histogram(x, bins=bins)[0] # 0th idx is counts
p = counts[np.nonzero(counts)]/N # avoids log(0)
H = -np.dot( p, np.log2(p) )
return H
答案 9 :(得分:1)
BiEntropy并不是计算熵的最快方法,但是它是严格的,并且以明确定义的方式建立在Shannon熵的基础上。它已在包括图像相关应用程序在内的各个领域进行了测试。 它是在Github上的Python中实现的。
答案 10 :(得分:0)
上面的答案很好,但是如果你需要一个可以在不同轴上运行的版本,这是一个有效的实现。
def entropy(A, axis=None):
"""Computes the Shannon entropy of the elements of A. Assumes A is
an array-like of nonnegative ints whose max value is approximately
the number of unique values present.
>>> a = [0, 1]
>>> entropy(a)
1.0
>>> A = np.c_[a, a]
>>> entropy(A)
1.0
>>> A # doctest: +NORMALIZE_WHITESPACE
array([[0, 0], [1, 1]])
>>> entropy(A, axis=0) # doctest: +NORMALIZE_WHITESPACE
array([ 1., 1.])
>>> entropy(A, axis=1) # doctest: +NORMALIZE_WHITESPACE
array([[ 0.], [ 0.]])
>>> entropy([0, 0, 0])
0.0
>>> entropy([])
0.0
>>> entropy([5])
0.0
"""
if A is None or len(A) < 2:
return 0.
A = np.asarray(A)
if axis is None:
A = A.flatten()
counts = np.bincount(A) # needs small, non-negative ints
counts = counts[counts > 0]
if len(counts) == 1:
return 0. # avoid returning -0.0 to prevent weird doctests
probs = counts / float(A.size)
return -np.sum(probs * np.log2(probs))
elif axis == 0:
entropies = map(lambda col: entropy(col), A.T)
return np.array(entropies)
elif axis == 1:
entropies = map(lambda row: entropy(row), A)
return np.array(entropies).reshape((-1, 1))
else:
raise ValueError("unsupported axis: {}".format(axis))
答案 11 :(得分:0)
from collections import Counter
from scipy import stats
labels = [0.9, 0.09, 0.1]
stats.entropy(list(Counter(labels).keys()), base=2)
答案 12 :(得分:-1)
def entropy(base, prob_a, prob_b ):
import math
base=2
x=prob_a
y=prob_b
expression =-((x*math.log(x,base)+(y*math.log(y,base))))
return [expression]