我正在求解泊松方程,并希望绘制精确解与网格点数的误差。我的代码是:
function [Ntot,err] = poisson(N)
nx = N; % Number of steps in space(x)
ny = N; % Number of steps in space(y)
Ntot = nx*ny;
niter = 1000; % Number of iterations
dx = 2/(nx-1); % Width of space step(x)
dy = 2/(ny-1); % Width of space step(y)
x = -1:dx:1; % Range of x(-1,1)
y = -1:dy:1; % Range of y(-1,1)
b = zeros(nx,ny);
dn = zeros(nx,ny);
% Initial Conditions
d = zeros(nx,ny);
u = zeros(nx,ny);
% Boundary conditions
d(:,1) = 0;
d(:,ny) = 0;
d(1,:) = 0;
d(nx,:) = 0;
% Source term
b(round(ny/4),round(nx/4)) = 3000;
b(round(ny*3/4),round(nx*3/4)) = -3000;
i = 2:nx-1;
j = 2:ny-1;
% 5-point difference (Explicit)
for it = 1:niter
dn = d;
d(i,j) = ((dy^2*(dn(i + 1,j) + dn(i - 1,j))) + (dx^2*(dn(i,j + 1) + dn(i,j - 1))) - (b(i,j)*dx^2*dy*2))/(2*(dx^2 + dy^2));
u(i,j) = 2*pi*pi*sin(pi*i).*sin(pi*j);
% Boundary conditions
d(:,1) = 0;
d(:,ny) = 0;
d(1,:) = 0;
d(nx,:) = 0;
end
%
%
% err = abs(u - d);
我得到的错误是:
订阅的分配维度不匹配。
泊松误差(第39行)
u(i,j) = 2*pi*pi*sin(pi*i).*sin(pi*j);
我不确定为什么不在每个网格点计算u。我尝试将它从for循环中取出但是没有用。任何想法都将不胜感激。
答案 0 :(得分:0)
这是因为i
和j
都是1到(N-2)向量,所以u(i, j)
是(N-2)-by-(N-2) )矩阵。但是,表达式2*pi*pi*sin(pi*i).*sin(pi*j)
是1-by-(N-2)向量。
尺寸显然不匹配,因此错误。
我不确定,但我猜你打算做以下事情:
u(i,j) = 2 * pi * pi * bsxfun(@times, sin(pi * i), sin(pi * j)');
或者,您可以使用基本矩阵乘法产生(N-2)-by-(N-2),如下所示:
u(i, j) = 2 * pi * pi * sin(pi * i') * sin(pi * j); %// Note the transpose
P.S:it is recommended not to use "i" and "j" as names for variables。