我在集合上有一个部分定义的运算符(disj_union
),我希望将其提升为商类型(natq
)。在道德上,我认为应该可以,因为总是可以在等价类中找到某些代表,其中定义了运算符[*]。但是,我无法完成提升定义保留等效性的证据,因为disj_union
仅部分定义。在我下面的理论文件中,我提出了一种定义我的disj_union
运算符的方法,但我不喜欢它,因为它具有很多abs
和Rep
函数,而我认为这很难合作(对吗?)。
使用Isabelle中的商定义这种事物的好方法是什么?
theory My_Theory imports
"~~/src/HOL/Library/Quotient_Set"
begin
(* A ∪-operator that is defined only on disjoint operands. *)
definition "X ∩ Y = {} ⟹ disj_union X Y ≡ X ∪ Y"
(* Two sets are equivalent if they have the same cardinality. *)
definition "card_eq X Y ≡ finite X ∧ finite Y ∧ card X = card Y"
(* Quotient sets of naturals by this equivalence. *)
quotient_type natq = "nat set" / partial: card_eq
proof (intro part_equivpI)
show "∃x. card_eq x x" by (metis card_eq_def finite.emptyI)
show "symp card_eq" by (metis card_eq_def symp_def)
show "transp card_eq" by (metis card_eq_def transp_def)
qed
(* I want to lift my disj_union operator to the natq type.
But I cannot complete the proof, because disj_union is
only partially defined. *)
lift_definition natq_add :: "natq ⇒ natq ⇒ natq"
is "disj_union"
oops
(* Here is another attempt to define natq_add. I think it
is correct, but it looks hard to prove things about,
because it uses abstraction and representation functions
explicitly. *)
definition natq_add :: "natq ⇒ natq ⇒ natq"
where "natq_add X Y ≡
let (X',Y') = SOME (X',Y').
X' ∈ Rep_natq X ∧ Y' ∈ Rep_natq Y ∧ X' ∩ Y' = {}
in abs_natq (disj_union X' Y')"
end
[*]这有点像捕获 - 避免替换只是在绑定变量不冲突的条件下定义的;通过重命名为alpha等价类中的另一个代表,可以始终满足的条件。
答案 0 :(得分:2)
这样的事情(只是一个想法):
definition disj_union' :: "nat set ⇒ nat set ⇒ nat set"
where "disj_union' X Y ≡
let (X',Y') = SOME (X',Y').
card_eq X' X ∧ card_eq Y' Y ∧ X' ∩ Y' = {}
in disj_union X' Y'"
lift_definition natq_add :: "natq ⇒ natq ⇒ natq"
is "disj_union'" oops
答案 1 :(得分:0)
为了记录,这里是Ondřej的建议(好吧,稍微修改一下,其中只有一个操作数被重命名,而不是两者都完成)......
(* A version of disj_union that is always defined. *)
definition disj_union' :: "nat set ⇒ nat set ⇒ nat set"
where "disj_union' X Y ≡
let Y' = SOME Y'.
card_eq Y' Y ∧ X ∩ Y' = {}
in disj_union X Y'"
(* Can always choose a natural that is not in a given finite subset of ℕ. *)
lemma nats_infinite:
fixes A :: "nat set"
assumes "finite A"
shows "∃x. x ∉ A"
proof (rule ccontr, simp)
assume "∀x. x ∈ A"
hence "A = UNIV" by fast
hence "finite UNIV" using assms by fast
thus False by fast
qed
(* Can always choose n naturals that are not in a given finite subset of ℕ. *)
lemma nat_renaming:
fixes x :: "nat set" and n :: nat
assumes "finite x"
shows "∃z'. finite z' ∧ card z' = n ∧ x ∩ z' = {}"
using assms
apply (induct n)
apply (intro exI[of _ "{}"], simp)
apply (clarsimp)
apply (rule_tac x="insert (SOME y. y ∉ x ∪ z') z'" in exI)
apply (intro conjI, simp)
apply (rule someI2_ex, rule nats_infinite, simp, simp)+
done
lift_definition natq_add :: "natq ⇒ natq ⇒ natq"
is "disj_union'"
apply (unfold disj_union'_def card_eq_def)
apply (rule someI2_ex, simp add: nat_renaming)
apply (rule someI2_ex, simp add: nat_renaming)
apply (metis card.union_inter_neutral disj_union_def empty_iff finite_Un)
done