所以如果我有数字[1,2,2,3]并且我想要k = 2个分区我会[1] [2,2,3],[1,2] [2,3] ,[2,2] [1,3],[2] [1,2,3],[3] [1,2,2]等。
答案 0 :(得分:1)
在Code Review处查看Python中的答案。
答案 1 :(得分:0)
user3569在Code Review的解决方案为下面的测试用例生成五个2元组,而不是仅仅为3元组。但是,删除对返回的元组的frozenset()
调用会导致代码仅返回3元组。修订后的代码如下:
from itertools import chain, combinations
def subsets(arr):
""" Note this only returns non empty subsets of arr"""
return chain(*[combinations(arr,i + 1) for i,a in enumerate(arr)])
def k_subset(arr, k):
s_arr = sorted(arr)
return set([i for i in combinations(subsets(arr),k)
if sorted(chain(*i)) == s_arr])
s = k_subset([2,2,2,2,3,3,5],3)
for ss in sorted(s):
print(len(ss)," - ",ss)
用户3569说“它运行得很慢,但相当简洁”。
(编辑:见下面的Knuth解决方案)
输出结果为:
3 - ((2,), (2,), (2, 2, 3, 3, 5))
3 - ((2,), (2, 2), (2, 3, 3, 5))
3 - ((2,), (2, 2, 2), (3, 3, 5))
3 - ((2,), (2, 2, 3), (2, 3, 5))
3 - ((2,), (2, 2, 5), (2, 3, 3))
3 - ((2,), (2, 3), (2, 2, 3, 5))
3 - ((2,), (2, 3, 3), (2, 2, 5))
3 - ((2,), (2, 3, 5), (2, 2, 3))
3 - ((2,), (2, 5), (2, 2, 3, 3))
3 - ((2,), (3,), (2, 2, 2, 3, 5))
3 - ((2,), (3, 3), (2, 2, 2, 5))
3 - ((2,), (3, 5), (2, 2, 2, 3))
3 - ((2,), (5,), (2, 2, 2, 3, 3))
3 - ((2, 2), (2, 2), (3, 3, 5))
3 - ((2, 2), (2, 3), (2, 3, 5))
3 - ((2, 2), (2, 5), (2, 3, 3))
3 - ((2, 2), (3, 3), (2, 2, 5))
3 - ((2, 2), (3, 5), (2, 2, 3))
3 - ((2, 3), (2, 2), (2, 3, 5))
3 - ((2, 3), (2, 3), (2, 2, 5))
3 - ((2, 3), (2, 5), (2, 2, 3))
3 - ((2, 3), (3, 5), (2, 2, 2))
3 - ((2, 5), (2, 2), (2, 3, 3))
3 - ((2, 5), (2, 3), (2, 2, 3))
3 - ((2, 5), (3, 3), (2, 2, 2))
3 - ((3,), (2, 2), (2, 2, 3, 5))
3 - ((3,), (2, 2, 2), (2, 3, 5))
3 - ((3,), (2, 2, 3), (2, 2, 5))
3 - ((3,), (2, 2, 5), (2, 2, 3))
3 - ((3,), (2, 3), (2, 2, 2, 5))
3 - ((3,), (2, 3, 5), (2, 2, 2))
3 - ((3,), (2, 5), (2, 2, 2, 3))
3 - ((3,), (3,), (2, 2, 2, 2, 5))
3 - ((3,), (3, 5), (2, 2, 2, 2))
3 - ((3,), (5,), (2, 2, 2, 2, 3))
3 - ((5,), (2, 2), (2, 2, 3, 3))
3 - ((5,), (2, 2, 2), (2, 3, 3))
3 - ((5,), (2, 2, 3), (2, 2, 3))
3 - ((5,), (2, 3), (2, 2, 2, 3))
3 - ((5,), (2, 3, 3), (2, 2, 2))
3 - ((5,), (3, 3), (2, 2, 2, 2))
如果不需要重复,可以如下调用由Adeel Zafar Soomro在同一Code Review页面上实现的Knuth解决方案:
s = algorithm_u([2,2,2,2,3,3,5],3)
ss = set(tuple(sorted(tuple(tuple(y) for y in x) for x in s)))
我还没有计时,但Knuth的解决方案明显更快,即使对于这个测试案例也是如此。
然而,它返回63个元组而不是user3569的解决方案返回的41个元组。我还没有仔细检查输出,以确定哪个输出是正确的。
答案 2 :(得分:0)
这是Haskell中的一个版本:
import Data.List (nub, sort, permutations)
parts 0 = []
parts n = nub $ map sort $ [n] : [x:xs | x <- [1..n`div`2], xs <- parts(n - x)]
partition [] ys result = sort $ map sort result
partition (x:xs) ys result =
partition xs (drop x ys) (result ++ [take x ys])
partitions xs k =
let variations = filter (\x -> length x == k) $ parts (length xs)
in nub $ concat $ map (\x -> mapVariation x (nub $ permutations xs)) variations
where mapVariation variation = map (\x -> partition variation x [])
OUTPUT:
*Main> partitions [1,2,2,3] 2
[[[1],[2,2,3]],[[1,2,3],[2]],[[1,2,2],[3]],[[1,2],[2,3]],[[1,3],[2,2]]]
答案 3 :(得分:0)
Python解决方案:
pip install PartitionSets
然后:
import partitionsets.partition
filter(lambda x: len(x) == k, partitionsets.partition.Partition(arr))
PartitionSets实现似乎非常快,但遗憾的是,您无法将多个分区作为参数传递,因此您需要从所有子集分区中过滤k-set分区。
您可能还想看一下: similar topic on researchgate