所以我对Mathematica很新,我正在努力学习以功能的方式解决问题。我正在解决的问题是列出我可以从列表中对元素求和的方式(重复),因此总和是leq到某个值。下面的代码解决了这个问题。
i = {7.25, 7.75, 15, 19, 22};
m = 22;
getSum[l_List, n_List] := Total[Thread[{l, n}] /. {x_, y_} -> x y];
t = Prepend[Map[Range[0, Floor[m/#]] &, i], List];
Outer @@ %;
Flatten[%, ArrayDepth[%] - 2];
Map[{#, getSum[i, #]} &, %];
DeleteCases[%, {_, x_} /; x > m || x == 0];
TableForm[Flatten /@ SortBy[%, Last], 0,
TableHeadings -> {None, Append[i, "Total"]}]
然而,代码检查了很多不必要的情况,如果m更高的列表更长,这可能是一个问题。我的问题就是解决这个问题最简单的Mathematica方式,即效率和代码优势。
答案 0 :(得分:1)
一种简单但不是最佳的方式是:
sol = Reduce[Dot[i, {a, b, c, d, e}] <= m, {a, b, c, d, e}, Integers];
首先尝试使用较小的i
,说i = {7.25, 7.75}
,以了解您是否可以使用此功能。
您可以通过提供系数的上限来提高速度,例如
sol = Reduce[And @@ {Dot[i, {a, b, c, d, e}] <= m,
Sequence @@ Thread[{a, b, c, d, e} <= Quotient[m, i]]},
{a, b, c, d, e}, Integers]
答案 1 :(得分:0)
怎么样
recurr[numbers_, boundary_] :=
Reap[memoryRecurr[0, {}, numbers, boundary]][[2, 1]];
memoryRecurr[_, _, {}, _] := Null;
memoryRecurr[sum_, numbers_, restNumbers_, diff_] :=
(
Block[
{presentNumber = First[restNumbers], restRest = Rest[restNumbers]}
,
If[
presentNumber <= diff
,
Block[{
newNumbers = Append[numbers, presentNumber],
newSum = sum + presentNumber
},
Sow[{newNumbers, newSum}];
memoryRecurr[
newSum,
newNumbers,
restRest,
diff - presentNumber
];
]
];
memoryRecurr[sum, numbers, restRest, diff]
];
);
那样
recurr[{1, 2, 3, 4, 5}, 7]
- &GT;
{{{1}, 1}, {{1, 2}, 3}, {{1, 2, 3}, 6}, {{1, 2, 4}, 7}, {{1, 3},
4}, {{1, 4}, 5}, {{1, 5}, 6}, {{2}, 2}, {{2, 3}, 5}, {{2, 4},
6}, {{2, 5}, 7}, {{3}, 3}, {{3, 4}, 7}, {{4}, 4}, {{5}, 5}}