使用这个numpy矩阵:
>>> print matrix
[['L' 'G' 'T' 'G' 'A' 'P' 'V' 'I']
['A' 'A' 'S' 'G' 'P' 'S' 'S' 'G']
['A' 'A' 'S' 'G' 'P' 'S' 'S' 'G']
['G' 'L' 'T' 'G' 'A' 'P' 'V' 'I']]
我已经有了这段代码:
for i, j in itertools.combinations(range(len(matrix.T)), 2):
c = matrix[:, [i,j]]
counts = collections.Counter(map(tuple,c))
print 'columns {} and {}'.format(i,j)
for AB in counts:
freq_AB = float(float(counts[AB])/len(c))
print 'Frequency of {} = {}'.format(AB, freq_AB)
print
产生
columns 0 and 1
Frequency of ('A', 'A') = 0.5
Frequency of ('G', 'L') = 0.25
Frequency of ('L', 'G') = 0.25
columns 0 and 2
Frequency of ('A', 'S') = 0.5
Frequency of ('G', 'T') = 0.25
Frequency of ('L', 'T') = 0.25
[...]
我想要添加到代码中的是检索列(i,j)中的频率,对于列i,j的字母对中的每个字母...我的意思是,输出类似于以下一个:
columns 0 and 1
Frequency of ('A', 'A') = 0.5
Freq of 'A' in column 0 = 0.5
Freq of 'A' in column 1 = 0.5
Frequency of ('G', 'L') = 0.25
Freq of 'G' in column 0 = 0.25
Freq of 'L' in column 1 = 0.25
Frequency of ('L', 'G') = 0.25
Freq of 'L' in column 0 = 0.25
Freq of 'G' in column 1 = 0.25
columns 0 and 2
Frequency of ('A', 'S') = 0.5
Freq of 'A' in column 0 = 0.5
Freq of 'S' in column 2 = 0.5
Frequency of ('G', 'T') = 0.25
Freq of 'G' in column 0 = 0.25
Freq of 'T' in column 2 = 0.5
Frequency of ('L', 'T') = 0.25
Freq of 'L' in column 0 = 0.25
Freq of 'T' in column 2 = 0.5
[...]
非常感谢任何帮助
答案 0 :(得分:2)
如何扩展相同的方法并像这样做:
for i, j in itertools.combinations(range(len(matrix.T)), 2):
c = matrix[:, [i,j]]
combined_counts = collections.Counter(map(tuple,c))
first_column_counts = collections.Counter(c[:,0])
second_column_counts = collections.Counter(c[:,1])
print 'columns {} and {}'.format(i,j)
for AB in combined_counts:
freq_AB = float(float(combined_counts[AB])/len(c))
print 'Frequency of {} = {}'.format(AB, freq_AB)
freq_A = float(first_column_counts[AB[0]])/len(c)
print " Freq of '{}' in column {} = {}".format(AB[0], i, freq_A)
freq_B = float(second_column_counts[AB[1]])/len(c)
print " Freq of '{}' in column {} = {}".format(AB[1], i, freq_B)
print