图像尺度的双三次插值算法

时间:2013-03-02 16:52:39

标签: c++ image algorithm image-processing bicubic

我正在尝试编写一个基本的双三次调整大小算法来调整24位RGB位图的大小。我对 the math 有一般性的了解,我正在使用Google代码中的this implementation作为指南。我这里没有使用任何外部库 - 我只是在尝试算法本身。位图表示为普通std::vector<unsigned char>

inline unsigned char getpixel(const std::vector<unsigned char>& in, 
    std::size_t src_width, std::size_t src_height, unsigned x, unsigned y, int channel)
{
    if (x < src_width && y < src_height)
        return in[(x * 3 * src_width) + (3 * y) + channel];

    return 0;
}

std::vector<unsigned char> bicubicresize(const std::vector<unsigned char>& in, 
    std::size_t src_width, std::size_t src_height, std::size_t dest_width, std::size_t dest_height)
{
    std::vector<unsigned char> out(dest_width * dest_height * 3);

    const float tx = float(src_width) / dest_width;
    const float ty = float(src_height) / dest_height;
    const int channels = 3;
    const std::size_t row_stride = dest_width * channels;

    unsigned char C[5] = { 0 };

    for (int i = 0; i < dest_height; ++i)
    {
        for (int j = 0; j < dest_width; ++j)
        {
            const int x = int(tx * j);
            const int y = int(ty * i);
            const float dx = tx * j - x;
            const float dy = ty * i - y;

            for (int k = 0; k < 3; ++k)
            {
                for (int jj = 0; jj < 4; ++jj)
                {
                    const int z = y - 1 + jj;
                    unsigned char a0 = getpixel(in, src_width, src_height, z, x, k);
                    unsigned char d0 = getpixel(in, src_width, src_height, z, x - 1, k) - a0;
                    unsigned char d2 = getpixel(in, src_width, src_height, z, x + 1, k) - a0;
                    unsigned char d3 = getpixel(in, src_width, src_height, z, x + 2, k) - a0;
                    unsigned char a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                    unsigned char a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
                    unsigned char a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
                    C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                    d0 = C[0] - C[1];
                    d2 = C[2] - C[1];
                    d3 = C[3] - C[1];
                    a0 = C[1];
                    a1 = -1.0 / 3 * d0 + d2 -1.0 / 6 * d3;
                    a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
                    a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
                    out[i * row_stride + j * channels + k] = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
                }
            }
        }
    }

    return out;
}

问题:当我使用此算法缩小图像时,它会起作用,但输出图像由于某种原因包含右侧的所有黑色像素,从而给出它被“裁剪”的外观。

示例:

INPUT IMAGE:

enter image description here

输出图像:

enter image description here

问题 查看算法,我看不出为什么会这样。有人看到这里的缺陷吗?

4 个答案:

答案 0 :(得分:12)

尽量不要交换宽度和高度。

   for (int i = 0; i < dest_width; ++i)
    {
        for (int j = 0; j < dest_height; ++j)

答案 1 :(得分:2)

我建议不要使用此功能,因为它写得非常糟糕。你需要进行两次卷积:首先是X坐标,然后是Y.在这个函数中,所有这些卷积都在同一时间产生,导致工作非常慢。如果你看看jj循环体,你可以注意到身体的所有第二部分都是从“d0 = C [0] - C [1];”开始的。可以移到jj循环之外,因为只有这个循环的最后一次迭代才会对out []数组生效(所有先前的迭代结果都将被覆盖)。

答案 2 :(得分:0)

您应该在致电x时切换zgetpixel,并在getpixel中使用以下内容对数组编制索引:

[(y * 3 * src_width) + (3 * x) + channel]

答案 3 :(得分:0)

getpixel(in, src_width, src_height, z, x, k)

z mean horizontal offset
x mean vertical offset

所以只需要修补getpixel函数,下面是修补后的代码:

inline unsigned char getpixel(const std::vector<unsigned char>& in, 
    std::size_t src_width, std::size_t src_height, unsigned y, unsigned x, int channel)
{
    if (x < src_width && y < src_height)
        return in[(y * 3 * src_width) + (3 * x) + channel];

    return 0;
}

std::vector<unsigned char> bicubicresize(const std::vector<unsigned char>& in, 
    std::size_t src_width, std::size_t src_height, std::size_t dest_width, std::size_t dest_height)
{
    std::vector<unsigned char> out(dest_width * dest_height * 3);

    const float tx = float(src_width) / dest_width;
    const float ty = float(src_height) / dest_height;
    const int channels = 3;
    const std::size_t row_stride = dest_width * channels;

    unsigned char C[5] = { 0 };

    for (int i = 0; i < dest_height; ++i)
    {
        for (int j = 0; j < dest_width; ++j)
        {
            const int x = int(tx * j);
            const int y = int(ty * i);
            const float dx = tx * j - x;
            const float dy = ty * i - y;

            for (int k = 0; k < 3; ++k)
            {
                for (int jj = 0; jj < 4; ++jj)
                {
                    const int z = y - 1 + jj;
                    unsigned char a0 = getpixel(in, src_width, src_height, z, x, k);
                    unsigned char d0 = getpixel(in, src_width, src_height, z, x - 1, k) - a0;
                    unsigned char d2 = getpixel(in, src_width, src_height, z, x + 1, k) - a0;
                    unsigned char d3 = getpixel(in, src_width, src_height, z, x + 2, k) - a0;
                    unsigned char a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                    unsigned char a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
                    unsigned char a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
                    C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                    d0 = C[0] - C[1];
                    d2 = C[2] - C[1];
                    d3 = C[3] - C[1];
                    a0 = C[1];
                    a1 = -1.0 / 3 * d0 + d2 -1.0 / 6 * d3;
                    a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
                    a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
                    out[i * row_stride + j * channels + k] = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
                }
            }
        }
    }

    return out;
}