我想执行二叉树的级别顺序遍历。因此,对于给定的树,请说:
3
/ \
2 1
/ \ \
4 6 10
输出将是:
3 2 1 4 6 10
我知道我可以使用某种队列,但是在C中递归执行此算法的算法是什么?任何帮助表示赞赏。
答案 0 :(得分:10)
图算法称为广度优先搜索,它使用队列来执行水平顺序遍历,这里是伪代码
void breadth_first(Node root)
{
Queue q;
q.push(root);
breadth_first_recursive(q)
}
void breadth_first_recursive(Queue q)
{
if q.empty() return;
Node node = q.pop()
print Node
if (n.left) q.push(n.left)
if (n.right) q.push(n.right)
breadth_first_recursive(q)
}
答案 1 :(得分:3)
来自维基百科的伪代码
levelorder(root)
q = empty queue
q.enqueue(root)
while not q.empty do
node := q.dequeue()
visit(node)
if node.left ≠ null
q.enqueue(node.left)
if node.right ≠ null
q.enqueue(node.right)
然后你可以把它变成C,这是微不足道的......
答案 2 :(得分:1)
此处来自C5库的代码(无递归函数):C5 UserGuideExamples - TreeTraversal
public static void BreadthFirst(Tree<T> t, Action<T> action)
{
IQueue<Tree<T>> work = new CircularQueue<Tree<T>>();
work.Enqueue(t);
while (!work.IsEmpty)
{
Tree<T> cur = work.Dequeue();
if (cur != null)
{
work.Enqueue(cur.t1);
work.Enqueue(cur.t2);
action(cur.val);
}
}
}
答案 3 :(得分:0)
void levelorder (Node *root)
{
if(!root)
return;
queue<Node*> Q;
Q.push(root);
while(!Q.empty())
{
Node *current = Q.front();//returns the front element in queue
cout <<current->data;//printing the front node of queue
if(current->left!=NULL)
Q.push(current->left);//pushing left child
if(current->right!=NULL)
Q.push(current->right);//pushing right child
Q.pop();//removing front element from queue.
}
}
答案 4 :(得分:0)
在 C 中,基本队列可以通过堆栈使用,即数组
#include<stdio.h>
#include<stdlib.h>
#define MaxSize 10
//typedef char ElemType;
typedef int ElemType;
typedef struct BiTNode {
ElemType data;
struct BiTNode * lchild, * rchild;
}
BiTNode, * BiTree;
void BuildTree(BiTree * T) {
/*
t1
t2 t3
t4 t5 t6
*/
BiTNode * t1 = T;
t1 -> data = 3;
BiTree t2 = (BiTNode * ) malloc(sizeof(BiTNode));
t2 -> data = 2;
t1 -> lchild = t2;
BiTree t3 = (BiTNode * ) malloc(sizeof(BiTNode));
t3 -> data = 1;
t1 -> rchild = t3;
BiTree t4 = (BiTNode * ) malloc(sizeof(BiTNode));
t4 -> data = 4;
BiTree t5 = (BiTNode * ) malloc(sizeof(BiTNode));
t5 -> data = 6;
t2 -> lchild = t4;
t2 -> rchild = t5;
BiTree t6 = (BiTNode * ) malloc(sizeof(BiTNode));
t6 -> data = 10;
t3 -> rchild = t6;
t3 -> lchild = NULL;
t4 -> lchild = NULL;
t4 -> rchild = NULL;
t5 -> lchild = NULL;
t5 -> rchild = NULL;
t6 -> lchild = NULL;
t6 -> rchild = NULL;
}
void print2DUtil(struct BiTNode * root, int space) {
// Base case
if (root == NULL)
return;
// Increase distance between levels
space += MaxSize;
// Process right child first
print2DUtil(root -> rchild, space);
// Print current node after space
// count
printf("\n");
for (int i = MaxSize; i < space; i++)
printf(" ");
printf("%d\n", root -> data);
// Process left child
print2DUtil(root -> lchild, space);
}
// Wrapper over print2DUtil()
void PrintTree(struct BiTNode * root) {
// Pass initial space count as 0
print2DUtil(root, 0);
}
void visit(BiTree T) {
printf("%d ", T -> data);
}
//BFS
void BFS(BiTree T) {
if (T != NULL) {
int front = 0;
int rear = 0;
BiTree queue[MaxSize];
BiTree p;
p = T;
rear = (rear + 1) % MaxSize;
queue[rear] = p;
while (rear != front) {
front = (front + 1) % MaxSize;
p = queue[front];
visit(p);
if (p -> lchild != NULL) {
rear = (rear + 1) % MaxSize;
queue[rear] = p -> lchild;
}
if (p -> rchild != NULL) {
rear = (rear + 1) % MaxSize;
queue[rear] = p -> rchild;
}
}
}
}
void DelTree(BiTree T) {
if (T == NULL) return;
DelTree(T -> lchild);
DelTree(T -> rchild);
free(T);
}
int main() {
BiTree t = (BiTNode * ) malloc(sizeof(BiTNode));
printf("Tree:");
BuildTree(t);
PrintTree(t);
printf("\n");
printf("BFS:");
BFS(t);
printf("\n");
DelTree(t);
}