我有一个带有日期时间索引的pandas数据框
Date
2013-02-22 00:00:00+00:00 0.280001
2013-02-25 00:00:00+00:00 0.109999
2013-02-26 00:00:00+00:00 -0.150000
2013-02-27 00:00:00+00:00 0.130001
2013-02-28 00:00:00+00:00 0.139999
Name: MOM12
并且想要评估给定日期时间索引的前三个值。
date = "2013-02-27 00:00:00+00:00"
df.ix[date]
我搜索了这个,但因为我的索引是一个我不能做的日期
df.ix[int-1]
答案 0 :(得分:16)
这是一种方法,首先通过get_loc
获取索引键的整数位置:
In [15]: t = pd.Timestamp("2013-02-27 00:00:00+00:00")
In [16]: df1.index.get_loc(t)
Out[16]: 3
然后你可以使用iloc
(获取整数位置,或按整数位置切片):
In [17]: loc = df1.index.get_loc(t)
In [18]: df.iloc[loc - 1]
Out[18]:
Date 2013-02-26 00:00:00
-0.15
Name: 2, Dtype: object
In [19]: df1.iloc[slice(max(0, loc-3), min(loc, len(df)))]
# the min and max feel slightly hacky (!) but needed incase it's within top or bottom 3
Out[19]:
Date
2013-02-22 0.280001
2013-02-25 0.109999
2013-02-26 -0.150000
请参阅indexing section of the docs。
我不太确定你是如何设置你的DataFrame的,但这对我来说看起来不像是一个日期时间索引。这是我如何得到DataFrame(带有Timestamp索引):
In [11]: df = pd.read_clipboard(sep='\s\s+', header=None, parse_dates=[0], names=['Date', None])
In [12]: df
Out[12]:
Date
0 2013-02-22 00:00:00 0.280001
1 2013-02-25 00:00:00 0.109999
2 2013-02-26 00:00:00 -0.150000
3 2013-02-27 00:00:00 0.130001
4 2013-02-28 00:00:00 0.139999
In [13]: df1 = df.set_index('Date')
In [14]: df1
Out[14]:
Date
2013-02-22 0.280001
2013-02-25 0.109999
2013-02-26 -0.150000
2013-02-27 0.130001
2013-02-28 0.139999
答案 1 :(得分:1)
您能做df.shift().loc[date]
吗?
答案 2 :(得分:0)
使用 shift 获取前一行值
data=[('2013-02-22 00:00:00+00:00', 0.280001)
,('2013-02-25 00:00:00+00:00', 0.109999)
,('2013-02-26 00:00:00+00:00', -0.150000)
,('2013-02-27 00:00:00+00:00', 0.130001)
,('2013-02-28 00:00:00+00:00', 0.139999)]
df=pd.DataFrame(data=data,columns=['date','value'])
df['date']=pd.to_datetime(df['date'])
df['p_value']=df.value.shift(1)
df['pp_value']=df.value.shift(2)
df['ppp_value']=df.value.shift(3)
print(df)
输出
date value p_value pp_value ppp_value
0 2013-02-22 00:00:00+00:00 0.280001 NaN NaN NaN
1 2013-02-25 00:00:00+00:00 0.109999 0.280001 NaN NaN
2 2013-02-26 00:00:00+00:00 -0.150000 0.109999 0.280001 NaN
3 2013-02-27 00:00:00+00:00 0.130001 -0.150000 0.109999 0.280001
4 2013-02-28 00:00:00+00:00 0.139999 0.130001 -0.150000 0.109999