我正在尝试选择最好的幻想足球队,给出不同的限制。我的目标是选择最大化其预计积分总和的玩家。
约束是:
1)团队必须包括:
-1 QB
-2 RBs
-2 WRs
-1 TE
2)球员的风险不得超过6
3)球员费用总和不得超过300.
我该怎么做? R中优化这些约束的最佳包/功能是什么?在给定这些约束的情况下,函数调用的最大化是什么?仅供参考,我将搜索100-300名玩家。
提前致谢!这是一个小例子数据集:
name <- c("Aaron Rodgers","Tom Brady","Arian Foster","Ray Rice","LeSean McCoy","Calvin Johnson","Larry Fitzgerald","Wes Welker","Rob Gronkowski","Jimmy Graham")
pos <- c("QB","QB","RB","RB","RB","WR","WR","WR","TE","TE")
pts <- c(167, 136, 195, 174, 144, 135, 89, 81, 114, 111)
risk <- c(2.9, 3.4, 0.7, 1.1, 3.5, 5.0, 6.7, 4.7, 3.7, 8.8)
cost <- c(60, 47, 63, 62, 40, 60, 50, 35, 40, 40)
mydata <- data.frame(name, pos, pts, risk, cost)
答案 0 :(得分:8)
您的约束和目标是线性的,但您的变量是二进制文件:是否应该选择每个玩家。所以你的问题比线性规划(LP)更普遍,它是一个混合整数编程(MIP)。在CRAN的Optimization Task View上,查找他们的MIP部分。
CPLEX是您可能无法访问的商业解算器,但GLPK是免费的。如果我是你,我可能会使用高级界面Rglpk。
这将要求您以矩阵形式提出问题,我建议您查看文档和示例。
编辑:这是一个实现:
# We are going to solve:
# maximize f'x subject to A*x <dir> b
# where:
# x is the variable to solve for: a vector of 0 or 1:
# 1 when the player is selected, 0 otherwise,
# f is your objective vector,
# A is a matrix, b a vector, and <dir> a vector of "<=", "==", or ">=",
# defining your linear constraints.
# number of variables
num.players <- length(name)
# objective:
f <- pts
# the variable are booleans
var.types <- rep("B", num.players)
# the constraints
A <- rbind(as.numeric(pos == "QB"), # num QB
as.numeric(pos == "RB"), # num RB
as.numeric(pos == "WR"), # num WR
as.numeric(pos == "TE"), # num TE
diag(risk), # player's risk
cost) # total cost
dir <- c("==",
"==",
"==",
"==",
rep("<=", num.players),
"<=")
b <- c(1,
2,
2,
1,
rep(6, num.players),
300)
library(Rglpk)
sol <- Rglpk_solve_LP(obj = f, mat = A, dir = dir, rhs = b,
types = var.types, max = TRUE)
sol
# $optimum
# [1] 836 ### <- the optimal total points
# $solution
# [1] 1 0 1 0 1 1 0 1 1 0 ### <- a `1` for the selected players
# $status
# [1] 0 ### <- an optimal solution has been found
# your dream team
name[sol$solution == 1]
# [1] "Aaron Rodgers" "Arian Foster" "LeSean McCoy"
# [4] "Calvin Johnson" "Wes Welker" "Rob Gronkowski